Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans
Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2024-02, Vol.26 (2), p.e16565-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e16565 |
container_title | Environmental microbiology |
container_volume | 26 |
creator | Egas, Reinier A. Sahonero‐Canavesi, Diana X. Bale, Nicole J. Koenen, Michel Yildiz, Çağlar Villanueva, Laura Sousa, Diana Z. Sánchez‐Andrea, Irene |
description | Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH |
doi_str_mv | 10.1111/1462-2920.16565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2927209821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927209821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4125-c72c9cbd91b58c8bddfd961916620d45c8671341d572b0e14f2c44d1413b73ca3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqUws6FILCyhvn4lGauqPKQiFpitxHbUVG4c4kTQf49DSgcW7uD7-u6RdRC6BnwPIebABIlJRkIruOAnaHqcnB5rIBN04f0WY0hogs_RhKaUCwAyRXKhTFepKFeVjnzXGu-j8DSu9iZyZdRtzM_ONZvKBs73tsw7ExjdK9NGi7CrtBnGrgigtb0PB6ZzX3ud1_4SnZW59ebqkGfo_WH1tnyK16-Pz8vFOlYMCI9VQlSmCp1BwVOVFlqXOhOQgRAEa8ZVKhKgDDRPSIENsJIoxjQwoEVCVU5n6G7UbVr30RvfyV3llbE2r43rvQyOJARnKYGA3v5Bt65v6_C7QFFIgXLOAjUfKdU671tTyqatdnm7l4Dl4L0c3B10Qzt4Hy5uDrp9sTP6yP-aHQA-Ap-VNfv_9OTq5XkU_gYM5o3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931813554</pqid></control><display><type>article</type><title>Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Egas, Reinier A. ; Sahonero‐Canavesi, Diana X. ; Bale, Nicole J. ; Koenen, Michel ; Yildiz, Çağlar ; Villanueva, Laura ; Sousa, Diana Z. ; Sánchez‐Andrea, Irene</creator><creatorcontrib>Egas, Reinier A. ; Sahonero‐Canavesi, Diana X. ; Bale, Nicole J. ; Koenen, Michel ; Yildiz, Çağlar ; Villanueva, Laura ; Sousa, Diana Z. ; Sánchez‐Andrea, Irene</creatorcontrib><description>Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate‐reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.g., acetic acid). At low pH, acetic acid is undissociated and toxic to microorganisms. We investigated the stress response of the acetotrophic Acididesulfobacillus acetoxydans to acetic acid. A. acetoxydans was cultivated in bioreactors at pH 5.0 (optimum). For stress experiments, triplicate reactors were spiked until 7.5 mM of acetic acid and compared with (non‐spiked) triplicate reactors for physiological, transcriptomic, and membrane lipid changes. After acetic acid spiking, the optical density initially dropped, followed by an adaptation phase during which growth resumed at a lower growth rate. Transcriptome analysis revealed a downregulation of genes involved in glutamate and aspartate synthesis following spiking. Membrane lipid analysis revealed a decrease in iso and anteiso fatty acid relative abundance; and an increase of acetyl‐CoA as a fatty acid precursor. These adaptations allow A. acetoxydans to detoxify acetic acid, creating milder conditions for other microorganisms in AMD environments.
Acid mine drainage is an environmental threat and acidophilic sulfate reducing bacteria (aSRB) are promising candidates for remediation biotechnology. Given the extreme acidity, organic acids are increasingly toxic. By combining reactor cultivations, transcriptomics and core lipid analysis, we identified novel acetic acid stress resistance mechanisms of aSRB highlighting their potential.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.16565</identifier><identifier>PMID: 38356112</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Acetic Acid ; Acid mine drainage ; Acids ; Adaptation ; Bioreactors ; Environmental impact ; Fatty Acids ; Genes ; Growth rate ; Leukocytes (neutrophilic) ; Lipids ; Membrane Lipids ; Membranes ; Metals ; Microorganisms ; Mine drainage ; Optical density ; Organic acids ; pH effects ; Reactors ; Relative abundance ; Stress response ; Sulfates ; Transcriptomes ; Transcriptomics ; Water pollution</subject><ispartof>Environmental microbiology, 2024-02, Vol.26 (2), p.e16565-n/a</ispartof><rights>2024 The Authors. published by Applied Microbiology International and John Wiley & Sons Ltd.</rights><rights>2024 The Authors. Environmental Microbiology published by Applied Microbiology International and John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4125-c72c9cbd91b58c8bddfd961916620d45c8671341d572b0e14f2c44d1413b73ca3</citedby><cites>FETCH-LOGICAL-c4125-c72c9cbd91b58c8bddfd961916620d45c8671341d572b0e14f2c44d1413b73ca3</cites><orcidid>0000-0003-1823-2179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.16565$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.16565$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38356112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Egas, Reinier A.</creatorcontrib><creatorcontrib>Sahonero‐Canavesi, Diana X.</creatorcontrib><creatorcontrib>Bale, Nicole J.</creatorcontrib><creatorcontrib>Koenen, Michel</creatorcontrib><creatorcontrib>Yildiz, Çağlar</creatorcontrib><creatorcontrib>Villanueva, Laura</creatorcontrib><creatorcontrib>Sousa, Diana Z.</creatorcontrib><creatorcontrib>Sánchez‐Andrea, Irene</creatorcontrib><title>Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate‐reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.g., acetic acid). At low pH, acetic acid is undissociated and toxic to microorganisms. We investigated the stress response of the acetotrophic Acididesulfobacillus acetoxydans to acetic acid. A. acetoxydans was cultivated in bioreactors at pH 5.0 (optimum). For stress experiments, triplicate reactors were spiked until 7.5 mM of acetic acid and compared with (non‐spiked) triplicate reactors for physiological, transcriptomic, and membrane lipid changes. After acetic acid spiking, the optical density initially dropped, followed by an adaptation phase during which growth resumed at a lower growth rate. Transcriptome analysis revealed a downregulation of genes involved in glutamate and aspartate synthesis following spiking. Membrane lipid analysis revealed a decrease in iso and anteiso fatty acid relative abundance; and an increase of acetyl‐CoA as a fatty acid precursor. These adaptations allow A. acetoxydans to detoxify acetic acid, creating milder conditions for other microorganisms in AMD environments.
Acid mine drainage is an environmental threat and acidophilic sulfate reducing bacteria (aSRB) are promising candidates for remediation biotechnology. Given the extreme acidity, organic acids are increasingly toxic. By combining reactor cultivations, transcriptomics and core lipid analysis, we identified novel acetic acid stress resistance mechanisms of aSRB highlighting their potential.</description><subject>Acetic Acid</subject><subject>Acid mine drainage</subject><subject>Acids</subject><subject>Adaptation</subject><subject>Bioreactors</subject><subject>Environmental impact</subject><subject>Fatty Acids</subject><subject>Genes</subject><subject>Growth rate</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lipids</subject><subject>Membrane Lipids</subject><subject>Membranes</subject><subject>Metals</subject><subject>Microorganisms</subject><subject>Mine drainage</subject><subject>Optical density</subject><subject>Organic acids</subject><subject>pH effects</subject><subject>Reactors</subject><subject>Relative abundance</subject><subject>Stress response</subject><subject>Sulfates</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><subject>Water pollution</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EoqUws6FILCyhvn4lGauqPKQiFpitxHbUVG4c4kTQf49DSgcW7uD7-u6RdRC6BnwPIebABIlJRkIruOAnaHqcnB5rIBN04f0WY0hogs_RhKaUCwAyRXKhTFepKFeVjnzXGu-j8DSu9iZyZdRtzM_ONZvKBs73tsw7ExjdK9NGi7CrtBnGrgigtb0PB6ZzX3ud1_4SnZW59ebqkGfo_WH1tnyK16-Pz8vFOlYMCI9VQlSmCp1BwVOVFlqXOhOQgRAEa8ZVKhKgDDRPSIENsJIoxjQwoEVCVU5n6G7UbVr30RvfyV3llbE2r43rvQyOJARnKYGA3v5Bt65v6_C7QFFIgXLOAjUfKdU671tTyqatdnm7l4Dl4L0c3B10Qzt4Hy5uDrp9sTP6yP-aHQA-Ap-VNfv_9OTq5XkU_gYM5o3E</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Egas, Reinier A.</creator><creator>Sahonero‐Canavesi, Diana X.</creator><creator>Bale, Nicole J.</creator><creator>Koenen, Michel</creator><creator>Yildiz, Çağlar</creator><creator>Villanueva, Laura</creator><creator>Sousa, Diana Z.</creator><creator>Sánchez‐Andrea, Irene</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1823-2179</orcidid></search><sort><creationdate>202402</creationdate><title>Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans</title><author>Egas, Reinier A. ; Sahonero‐Canavesi, Diana X. ; Bale, Nicole J. ; Koenen, Michel ; Yildiz, Çağlar ; Villanueva, Laura ; Sousa, Diana Z. ; Sánchez‐Andrea, Irene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4125-c72c9cbd91b58c8bddfd961916620d45c8671341d572b0e14f2c44d1413b73ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetic Acid</topic><topic>Acid mine drainage</topic><topic>Acids</topic><topic>Adaptation</topic><topic>Bioreactors</topic><topic>Environmental impact</topic><topic>Fatty Acids</topic><topic>Genes</topic><topic>Growth rate</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lipids</topic><topic>Membrane Lipids</topic><topic>Membranes</topic><topic>Metals</topic><topic>Microorganisms</topic><topic>Mine drainage</topic><topic>Optical density</topic><topic>Organic acids</topic><topic>pH effects</topic><topic>Reactors</topic><topic>Relative abundance</topic><topic>Stress response</topic><topic>Sulfates</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egas, Reinier A.</creatorcontrib><creatorcontrib>Sahonero‐Canavesi, Diana X.</creatorcontrib><creatorcontrib>Bale, Nicole J.</creatorcontrib><creatorcontrib>Koenen, Michel</creatorcontrib><creatorcontrib>Yildiz, Çağlar</creatorcontrib><creatorcontrib>Villanueva, Laura</creatorcontrib><creatorcontrib>Sousa, Diana Z.</creatorcontrib><creatorcontrib>Sánchez‐Andrea, Irene</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egas, Reinier A.</au><au>Sahonero‐Canavesi, Diana X.</au><au>Bale, Nicole J.</au><au>Koenen, Michel</au><au>Yildiz, Çağlar</au><au>Villanueva, Laura</au><au>Sousa, Diana Z.</au><au>Sánchez‐Andrea, Irene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2024-02</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>e16565</spage><epage>n/a</epage><pages>e16565-n/a</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate‐reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.g., acetic acid). At low pH, acetic acid is undissociated and toxic to microorganisms. We investigated the stress response of the acetotrophic Acididesulfobacillus acetoxydans to acetic acid. A. acetoxydans was cultivated in bioreactors at pH 5.0 (optimum). For stress experiments, triplicate reactors were spiked until 7.5 mM of acetic acid and compared with (non‐spiked) triplicate reactors for physiological, transcriptomic, and membrane lipid changes. After acetic acid spiking, the optical density initially dropped, followed by an adaptation phase during which growth resumed at a lower growth rate. Transcriptome analysis revealed a downregulation of genes involved in glutamate and aspartate synthesis following spiking. Membrane lipid analysis revealed a decrease in iso and anteiso fatty acid relative abundance; and an increase of acetyl‐CoA as a fatty acid precursor. These adaptations allow A. acetoxydans to detoxify acetic acid, creating milder conditions for other microorganisms in AMD environments.
Acid mine drainage is an environmental threat and acidophilic sulfate reducing bacteria (aSRB) are promising candidates for remediation biotechnology. Given the extreme acidity, organic acids are increasingly toxic. By combining reactor cultivations, transcriptomics and core lipid analysis, we identified novel acetic acid stress resistance mechanisms of aSRB highlighting their potential.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38356112</pmid><doi>10.1111/1462-2920.16565</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1823-2179</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2024-02, Vol.26 (2), p.e16565-n/a |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_miscellaneous_2927209821 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Acetic Acid Acid mine drainage Acids Adaptation Bioreactors Environmental impact Fatty Acids Genes Growth rate Leukocytes (neutrophilic) Lipids Membrane Lipids Membranes Metals Microorganisms Mine drainage Optical density Organic acids pH effects Reactors Relative abundance Stress response Sulfates Transcriptomes Transcriptomics Water pollution |
title | Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetic%20acid%20stress%20response%20of%20the%20acidophilic%20sulfate%20reducer%20Acididesulfobacillus%20acetoxydans&rft.jtitle=Environmental%20microbiology&rft.au=Egas,%20Reinier%20A.&rft.date=2024-02&rft.volume=26&rft.issue=2&rft.spage=e16565&rft.epage=n/a&rft.pages=e16565-n/a&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.16565&rft_dat=%3Cproquest_cross%3E2927209821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931813554&rft_id=info:pmid/38356112&rfr_iscdi=true |