Identifying high‐risk medications and error types in Danish patient safety database using disproportionality analysis

Background Medication error (ME) surveillance in Danish healthcare relies on the mandatory national incident reporting system, the Danish Patient Safety Database (DPSD). Individual case reviews and descriptive statistics with frequency counts are the most often used approaches when analyzing MEs in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacoepidemiology and drug safety 2024-02, Vol.33 (2), p.e5735-n/a
Hauptverfasser: Tchijevitch, Olga, Birkeland, Søren F., Bogh, Søren B., Hallas, Jesper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e5735
container_title Pharmacoepidemiology and drug safety
container_volume 33
creator Tchijevitch, Olga
Birkeland, Søren F.
Bogh, Søren B.
Hallas, Jesper
description Background Medication error (ME) surveillance in Danish healthcare relies on the mandatory national incident reporting system, the Danish Patient Safety Database (DPSD). Individual case reviews and descriptive statistics with frequency counts are the most often used approaches when analyzing MEs in incident reporting systems, including the DPSD. However, incident reporting systems often generate a large number of reports and may suffer from underreporting; consequently, additional approaches are needed to overcome these challenges. Disproportionality analysis (DPA) is a statistical tool used for signal detection of adverse drug reactions in pharmacovigilance reports, but the evidence for using DPA on ME analysis in safety reporting systems is limited. Objectives We aimed to test the feasibility of DPA by analysing harmful MEs reported to DPSD 2014–2018. Methods We utilized proportional reporting ratios (PRR) to identify signals of diproportionality. Results We identified well‐known high‐risk medicines, including anticoagulants, opioids, insulins, antiepileptic, and antipsychotic drugs, and their association with several ME types and stages in a medication process. Conclusion DPA might be suggested as an additional tool for screening MEs and identifying priority areas for further investigation in safety reporting systems.
doi_str_mv 10.1002/pds.5735
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2927209047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927209047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3105-3c00ac40f2c4bdb43cf5820f1b1bfe2594ad26e24369f831ff3fa388ebb84ff43</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMobk7BXyABb7zpTPOxNpcyvwYDBfW6pG2yZXZtzWmR3vkT_I3-ElM3RQSvTiDPeXg5L0LHIRmHhNDzOoexiJjYQcOQSBmEQkS7_VuwIBYTOUAHACtC_J_k-2jAYiaimNMhep3lumys6Wy5wEu7WH68vTsLz3itc5upxlYlYFXmWDtXOdx0tQZsS3ypSgtLXHvC72NQRjcdzlWjUgUat9D7cgu1q-rK9RpVWE8oPzuwcIj2jCpAH23nCD1dXz1Ob4P53c1sejEPMubTBywjRGWcGJrxNE85y4yIKTFhGqZGUyG5yulEU84m0sQsNIYZxeJYp2nMjeFshM42Xh_kpdXQJGsLmS4KVeqqhYRKGlEiCY88evoHXVWt83k3FIkYIb-EmasAnDZJ7exauS4JSdKXkfgykr4Mj55shW3qz_kDfl_fA8EGeLWF7v4VJfeXD1_CTwn2lpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927073004</pqid></control><display><type>article</type><title>Identifying high‐risk medications and error types in Danish patient safety database using disproportionality analysis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Tchijevitch, Olga ; Birkeland, Søren F. ; Bogh, Søren B. ; Hallas, Jesper</creator><creatorcontrib>Tchijevitch, Olga ; Birkeland, Søren F. ; Bogh, Søren B. ; Hallas, Jesper</creatorcontrib><description>Background Medication error (ME) surveillance in Danish healthcare relies on the mandatory national incident reporting system, the Danish Patient Safety Database (DPSD). Individual case reviews and descriptive statistics with frequency counts are the most often used approaches when analyzing MEs in incident reporting systems, including the DPSD. However, incident reporting systems often generate a large number of reports and may suffer from underreporting; consequently, additional approaches are needed to overcome these challenges. Disproportionality analysis (DPA) is a statistical tool used for signal detection of adverse drug reactions in pharmacovigilance reports, but the evidence for using DPA on ME analysis in safety reporting systems is limited. Objectives We aimed to test the feasibility of DPA by analysing harmful MEs reported to DPSD 2014–2018. Methods We utilized proportional reporting ratios (PRR) to identify signals of diproportionality. Results We identified well‐known high‐risk medicines, including anticoagulants, opioids, insulins, antiepileptic, and antipsychotic drugs, and their association with several ME types and stages in a medication process. Conclusion DPA might be suggested as an additional tool for screening MEs and identifying priority areas for further investigation in safety reporting systems.</description><identifier>ISSN: 1053-8569</identifier><identifier>ISSN: 1099-1557</identifier><identifier>EISSN: 1099-1557</identifier><identifier>DOI: 10.1002/pds.5735</identifier><identifier>PMID: 38357842</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Adverse Drug Reaction Reporting Systems ; Antiepileptic agents ; Antipsychotics ; Denmark - epidemiology ; Drug-Related Side Effects and Adverse Reactions - epidemiology ; Humans ; incident reporting ; medication error ; Medication Errors ; medication safety ; Patient Safety ; Pharmacovigilance ; Safety ; signal detection ; Statistical analysis</subject><ispartof>Pharmacoepidemiology and drug safety, 2024-02, Vol.33 (2), p.e5735-n/a</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3105-3c00ac40f2c4bdb43cf5820f1b1bfe2594ad26e24369f831ff3fa388ebb84ff43</cites><orcidid>0000-0002-2356-8366 ; 0000-0002-8097-8708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpds.5735$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpds.5735$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38357842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tchijevitch, Olga</creatorcontrib><creatorcontrib>Birkeland, Søren F.</creatorcontrib><creatorcontrib>Bogh, Søren B.</creatorcontrib><creatorcontrib>Hallas, Jesper</creatorcontrib><title>Identifying high‐risk medications and error types in Danish patient safety database using disproportionality analysis</title><title>Pharmacoepidemiology and drug safety</title><addtitle>Pharmacoepidemiol Drug Saf</addtitle><description>Background Medication error (ME) surveillance in Danish healthcare relies on the mandatory national incident reporting system, the Danish Patient Safety Database (DPSD). Individual case reviews and descriptive statistics with frequency counts are the most often used approaches when analyzing MEs in incident reporting systems, including the DPSD. However, incident reporting systems often generate a large number of reports and may suffer from underreporting; consequently, additional approaches are needed to overcome these challenges. Disproportionality analysis (DPA) is a statistical tool used for signal detection of adverse drug reactions in pharmacovigilance reports, but the evidence for using DPA on ME analysis in safety reporting systems is limited. Objectives We aimed to test the feasibility of DPA by analysing harmful MEs reported to DPSD 2014–2018. Methods We utilized proportional reporting ratios (PRR) to identify signals of diproportionality. Results We identified well‐known high‐risk medicines, including anticoagulants, opioids, insulins, antiepileptic, and antipsychotic drugs, and their association with several ME types and stages in a medication process. Conclusion DPA might be suggested as an additional tool for screening MEs and identifying priority areas for further investigation in safety reporting systems.</description><subject>Adverse Drug Reaction Reporting Systems</subject><subject>Antiepileptic agents</subject><subject>Antipsychotics</subject><subject>Denmark - epidemiology</subject><subject>Drug-Related Side Effects and Adverse Reactions - epidemiology</subject><subject>Humans</subject><subject>incident reporting</subject><subject>medication error</subject><subject>Medication Errors</subject><subject>medication safety</subject><subject>Patient Safety</subject><subject>Pharmacovigilance</subject><subject>Safety</subject><subject>signal detection</subject><subject>Statistical analysis</subject><issn>1053-8569</issn><issn>1099-1557</issn><issn>1099-1557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1LwzAUhoMobk7BXyABb7zpTPOxNpcyvwYDBfW6pG2yZXZtzWmR3vkT_I3-ElM3RQSvTiDPeXg5L0LHIRmHhNDzOoexiJjYQcOQSBmEQkS7_VuwIBYTOUAHACtC_J_k-2jAYiaimNMhep3lumys6Wy5wEu7WH68vTsLz3itc5upxlYlYFXmWDtXOdx0tQZsS3ypSgtLXHvC72NQRjcdzlWjUgUat9D7cgu1q-rK9RpVWE8oPzuwcIj2jCpAH23nCD1dXz1Ob4P53c1sejEPMubTBywjRGWcGJrxNE85y4yIKTFhGqZGUyG5yulEU84m0sQsNIYZxeJYp2nMjeFshM42Xh_kpdXQJGsLmS4KVeqqhYRKGlEiCY88evoHXVWt83k3FIkYIb-EmasAnDZJ7exauS4JSdKXkfgykr4Mj55shW3qz_kDfl_fA8EGeLWF7v4VJfeXD1_CTwn2lpU</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Tchijevitch, Olga</creator><creator>Birkeland, Søren F.</creator><creator>Bogh, Søren B.</creator><creator>Hallas, Jesper</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2356-8366</orcidid><orcidid>https://orcid.org/0000-0002-8097-8708</orcidid></search><sort><creationdate>202402</creationdate><title>Identifying high‐risk medications and error types in Danish patient safety database using disproportionality analysis</title><author>Tchijevitch, Olga ; Birkeland, Søren F. ; Bogh, Søren B. ; Hallas, Jesper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3105-3c00ac40f2c4bdb43cf5820f1b1bfe2594ad26e24369f831ff3fa388ebb84ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adverse Drug Reaction Reporting Systems</topic><topic>Antiepileptic agents</topic><topic>Antipsychotics</topic><topic>Denmark - epidemiology</topic><topic>Drug-Related Side Effects and Adverse Reactions - epidemiology</topic><topic>Humans</topic><topic>incident reporting</topic><topic>medication error</topic><topic>Medication Errors</topic><topic>medication safety</topic><topic>Patient Safety</topic><topic>Pharmacovigilance</topic><topic>Safety</topic><topic>signal detection</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tchijevitch, Olga</creatorcontrib><creatorcontrib>Birkeland, Søren F.</creatorcontrib><creatorcontrib>Bogh, Søren B.</creatorcontrib><creatorcontrib>Hallas, Jesper</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmacoepidemiology and drug safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tchijevitch, Olga</au><au>Birkeland, Søren F.</au><au>Bogh, Søren B.</au><au>Hallas, Jesper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying high‐risk medications and error types in Danish patient safety database using disproportionality analysis</atitle><jtitle>Pharmacoepidemiology and drug safety</jtitle><addtitle>Pharmacoepidemiol Drug Saf</addtitle><date>2024-02</date><risdate>2024</risdate><volume>33</volume><issue>2</issue><spage>e5735</spage><epage>n/a</epage><pages>e5735-n/a</pages><issn>1053-8569</issn><issn>1099-1557</issn><eissn>1099-1557</eissn><abstract>Background Medication error (ME) surveillance in Danish healthcare relies on the mandatory national incident reporting system, the Danish Patient Safety Database (DPSD). Individual case reviews and descriptive statistics with frequency counts are the most often used approaches when analyzing MEs in incident reporting systems, including the DPSD. However, incident reporting systems often generate a large number of reports and may suffer from underreporting; consequently, additional approaches are needed to overcome these challenges. Disproportionality analysis (DPA) is a statistical tool used for signal detection of adverse drug reactions in pharmacovigilance reports, but the evidence for using DPA on ME analysis in safety reporting systems is limited. Objectives We aimed to test the feasibility of DPA by analysing harmful MEs reported to DPSD 2014–2018. Methods We utilized proportional reporting ratios (PRR) to identify signals of diproportionality. Results We identified well‐known high‐risk medicines, including anticoagulants, opioids, insulins, antiepileptic, and antipsychotic drugs, and their association with several ME types and stages in a medication process. Conclusion DPA might be suggested as an additional tool for screening MEs and identifying priority areas for further investigation in safety reporting systems.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38357842</pmid><doi>10.1002/pds.5735</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2356-8366</orcidid><orcidid>https://orcid.org/0000-0002-8097-8708</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-8569
ispartof Pharmacoepidemiology and drug safety, 2024-02, Vol.33 (2), p.e5735-n/a
issn 1053-8569
1099-1557
1099-1557
language eng
recordid cdi_proquest_miscellaneous_2927209047
source MEDLINE; Access via Wiley Online Library
subjects Adverse Drug Reaction Reporting Systems
Antiepileptic agents
Antipsychotics
Denmark - epidemiology
Drug-Related Side Effects and Adverse Reactions - epidemiology
Humans
incident reporting
medication error
Medication Errors
medication safety
Patient Safety
Pharmacovigilance
Safety
signal detection
Statistical analysis
title Identifying high‐risk medications and error types in Danish patient safety database using disproportionality analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20high%E2%80%90risk%20medications%20and%20error%20types%20in%20Danish%20patient%20safety%20database%20using%20disproportionality%20analysis&rft.jtitle=Pharmacoepidemiology%20and%20drug%20safety&rft.au=Tchijevitch,%20Olga&rft.date=2024-02&rft.volume=33&rft.issue=2&rft.spage=e5735&rft.epage=n/a&rft.pages=e5735-n/a&rft.issn=1053-8569&rft.eissn=1099-1557&rft_id=info:doi/10.1002/pds.5735&rft_dat=%3Cproquest_cross%3E2927209047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927073004&rft_id=info:pmid/38357842&rfr_iscdi=true