Aging process optimization for a copper alloy considering hardness and electrical conductivity

A multi-objective optimization methodology for the aging process parameters is proposed which simultaneously considers the mechanical performance and the electrical conductivity. An optimal model of the aging processes for Cu–Cr–Zr–Mg is constructed using artificial neural networks and genetic algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2007-02, Vol.38 (4), p.697-701
Hauptverfasser: Su, Juan-hua, Li, He-jun, Liu, Ping, Dong, Qi-ming, Li, Ai-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 701
container_issue 4
container_start_page 697
container_title Computational materials science
container_volume 38
creator Su, Juan-hua
Li, He-jun
Liu, Ping
Dong, Qi-ming
Li, Ai-jun
description A multi-objective optimization methodology for the aging process parameters is proposed which simultaneously considers the mechanical performance and the electrical conductivity. An optimal model of the aging processes for Cu–Cr–Zr–Mg is constructed using artificial neural networks and genetic algorithms. A supervised artificial neural network (ANN) to model the non-linear relationship between parameters of aging treatment and hardness and conductivity properties is considered for a Cu–Cr–Zr–Mg lead frame alloy. Based on the successfully trained ANN model, a genetic algorithm is adopted as the optimization scheme to optimize the input parameters. The result indicates that an artificial neural network combined with a genetic algorithm is effective for the multi-objective optimization of the aging process parameters.
doi_str_mv 10.1016/j.commatsci.2006.04.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29269888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025606001108</els_id><sourcerecordid>29269888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-df31520a6c7b209c029926bb10411698165d586a96b6629de5c377275b1514063</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDOQCt4S1mzj2sar4k5C4wBXLsZ3iKomD7VYqT4-jVnDktF5pvlnPIHSNocCA6d2mUK7vZQzKFgSAFlAWgBcnaIZZzXNggE_RDDipcyAVPUcXIWwgkZyRGfpYru2wzkbvlAkhc2O0vf2W0boha53PZKbcOJr06Dq3T8sQrDZ-Yj6l18MEyUFnpjMqeqtkN2n0VkW7s3F_ic5a2QVzdZxz9P5w_7Z6yl9eH59Xy5dcLWoac90ucEVAUlU3BLgCwjmhTYOhxNNHMa10xajktKGUcG2qxNWkrhpc4RLoYo5uD74pyNfWhCh6G5TpOjkYtw2CJDvOGEvC-iBU3oXgTStGb3vp9wKDmPoUG_Hbp5j6FFCK1Gcib44nZEgxWy8HZcMfzkpWAS-TbnnQmZR3Z40XyckMymjrU0dCO_vvrR-EvJBe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29269888</pqid></control><display><type>article</type><title>Aging process optimization for a copper alloy considering hardness and electrical conductivity</title><source>Elsevier ScienceDirect Journals</source><creator>Su, Juan-hua ; Li, He-jun ; Liu, Ping ; Dong, Qi-ming ; Li, Ai-jun</creator><creatorcontrib>Su, Juan-hua ; Li, He-jun ; Liu, Ping ; Dong, Qi-ming ; Li, Ai-jun</creatorcontrib><description>A multi-objective optimization methodology for the aging process parameters is proposed which simultaneously considers the mechanical performance and the electrical conductivity. An optimal model of the aging processes for Cu–Cr–Zr–Mg is constructed using artificial neural networks and genetic algorithms. A supervised artificial neural network (ANN) to model the non-linear relationship between parameters of aging treatment and hardness and conductivity properties is considered for a Cu–Cr–Zr–Mg lead frame alloy. Based on the successfully trained ANN model, a genetic algorithm is adopted as the optimization scheme to optimize the input parameters. The result indicates that an artificial neural network combined with a genetic algorithm is effective for the multi-objective optimization of the aging process parameters.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2006.04.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aging parameter optimization ; Cross-disciplinary physics: materials science; rheology ; Cu–Cr–Zr–Mg alloy ; Electrical conductivity ; Exact sciences and technology ; Hardness ; Materials science ; Physics ; Solid solution, precipitation, and dispersion hardening; aging ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Computational materials science, 2007-02, Vol.38 (4), p.697-701</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-df31520a6c7b209c029926bb10411698165d586a96b6629de5c377275b1514063</citedby><cites>FETCH-LOGICAL-c376t-df31520a6c7b209c029926bb10411698165d586a96b6629de5c377275b1514063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2006.04.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18485094$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Juan-hua</creatorcontrib><creatorcontrib>Li, He-jun</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Dong, Qi-ming</creatorcontrib><creatorcontrib>Li, Ai-jun</creatorcontrib><title>Aging process optimization for a copper alloy considering hardness and electrical conductivity</title><title>Computational materials science</title><description>A multi-objective optimization methodology for the aging process parameters is proposed which simultaneously considers the mechanical performance and the electrical conductivity. An optimal model of the aging processes for Cu–Cr–Zr–Mg is constructed using artificial neural networks and genetic algorithms. A supervised artificial neural network (ANN) to model the non-linear relationship between parameters of aging treatment and hardness and conductivity properties is considered for a Cu–Cr–Zr–Mg lead frame alloy. Based on the successfully trained ANN model, a genetic algorithm is adopted as the optimization scheme to optimize the input parameters. The result indicates that an artificial neural network combined with a genetic algorithm is effective for the multi-objective optimization of the aging process parameters.</description><subject>Aging parameter optimization</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cu–Cr–Zr–Mg alloy</subject><subject>Electrical conductivity</subject><subject>Exact sciences and technology</subject><subject>Hardness</subject><subject>Materials science</subject><subject>Physics</subject><subject>Solid solution, precipitation, and dispersion hardening; aging</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDOQCt4S1mzj2sar4k5C4wBXLsZ3iKomD7VYqT4-jVnDktF5pvlnPIHSNocCA6d2mUK7vZQzKFgSAFlAWgBcnaIZZzXNggE_RDDipcyAVPUcXIWwgkZyRGfpYru2wzkbvlAkhc2O0vf2W0boha53PZKbcOJr06Dq3T8sQrDZ-Yj6l18MEyUFnpjMqeqtkN2n0VkW7s3F_ic5a2QVzdZxz9P5w_7Z6yl9eH59Xy5dcLWoac90ucEVAUlU3BLgCwjmhTYOhxNNHMa10xajktKGUcG2qxNWkrhpc4RLoYo5uD74pyNfWhCh6G5TpOjkYtw2CJDvOGEvC-iBU3oXgTStGb3vp9wKDmPoUG_Hbp5j6FFCK1Gcib44nZEgxWy8HZcMfzkpWAS-TbnnQmZR3Z40XyckMymjrU0dCO_vvrR-EvJBe</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Su, Juan-hua</creator><creator>Li, He-jun</creator><creator>Liu, Ping</creator><creator>Dong, Qi-ming</creator><creator>Li, Ai-jun</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070201</creationdate><title>Aging process optimization for a copper alloy considering hardness and electrical conductivity</title><author>Su, Juan-hua ; Li, He-jun ; Liu, Ping ; Dong, Qi-ming ; Li, Ai-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-df31520a6c7b209c029926bb10411698165d586a96b6629de5c377275b1514063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aging parameter optimization</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cu–Cr–Zr–Mg alloy</topic><topic>Electrical conductivity</topic><topic>Exact sciences and technology</topic><topic>Hardness</topic><topic>Materials science</topic><topic>Physics</topic><topic>Solid solution, precipitation, and dispersion hardening; aging</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Juan-hua</creatorcontrib><creatorcontrib>Li, He-jun</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Dong, Qi-ming</creatorcontrib><creatorcontrib>Li, Ai-jun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Juan-hua</au><au>Li, He-jun</au><au>Liu, Ping</au><au>Dong, Qi-ming</au><au>Li, Ai-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aging process optimization for a copper alloy considering hardness and electrical conductivity</atitle><jtitle>Computational materials science</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>38</volume><issue>4</issue><spage>697</spage><epage>701</epage><pages>697-701</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>A multi-objective optimization methodology for the aging process parameters is proposed which simultaneously considers the mechanical performance and the electrical conductivity. An optimal model of the aging processes for Cu–Cr–Zr–Mg is constructed using artificial neural networks and genetic algorithms. A supervised artificial neural network (ANN) to model the non-linear relationship between parameters of aging treatment and hardness and conductivity properties is considered for a Cu–Cr–Zr–Mg lead frame alloy. Based on the successfully trained ANN model, a genetic algorithm is adopted as the optimization scheme to optimize the input parameters. The result indicates that an artificial neural network combined with a genetic algorithm is effective for the multi-objective optimization of the aging process parameters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2006.04.013</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2007-02, Vol.38 (4), p.697-701
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_29269888
source Elsevier ScienceDirect Journals
subjects Aging parameter optimization
Cross-disciplinary physics: materials science
rheology
Cu–Cr–Zr–Mg alloy
Electrical conductivity
Exact sciences and technology
Hardness
Materials science
Physics
Solid solution, precipitation, and dispersion hardening
aging
Treatment of materials and its effects on microstructure and properties
title Aging process optimization for a copper alloy considering hardness and electrical conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aging%20process%20optimization%20for%20a%20copper%20alloy%20considering%20hardness%20and%20electrical%20conductivity&rft.jtitle=Computational%20materials%20science&rft.au=Su,%20Juan-hua&rft.date=2007-02-01&rft.volume=38&rft.issue=4&rft.spage=697&rft.epage=701&rft.pages=697-701&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2006.04.013&rft_dat=%3Cproquest_cross%3E29269888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29269888&rft_id=info:pmid/&rft_els_id=S0927025606001108&rfr_iscdi=true