A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II

Mixed-model assembly lines allow for the simultaneous assembly of a set of similar models of a product, which may be launched in the assembly line in any order and mix. As current markets are characterized by a growing trend for higher product variability, mixed-model assembly lines are preferred ov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 2004-12, Vol.47 (4), p.391-407
Hauptverfasser: Simaria, Ana Sofia, Vilarinho, Pedro M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 4
container_start_page 391
container_title Computers & industrial engineering
container_volume 47
creator Simaria, Ana Sofia
Vilarinho, Pedro M.
description Mixed-model assembly lines allow for the simultaneous assembly of a set of similar models of a product, which may be launched in the assembly line in any order and mix. As current markets are characterized by a growing trend for higher product variability, mixed-model assembly lines are preferred over the traditional single-model assembly lines. This paper presents a mathematical programming model and an iterative genetic algorithm-based procedure for the mixed-model assembly line balancing problem (MALBP) with parallel workstations, in which the goal is to maximise the production rate of the line for a pre-determined number of operators. The addressed problem accounts for some relevant issues that reflect the operating conditions of real-world assembly lines, like zoning constraints and workload balancing and also allows the decision maker to control the generation of parallel workstations.
doi_str_mv 10.1016/j.cie.2004.09.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29265993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835204001275</els_id><sourcerecordid>29265993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-1a17921ca6d738cbe7ea76d03ec388d518b3c5361dff7b6c67690d34f37d4b513</originalsourceid><addsrcrecordid>eNp9kD9PAyEYh4nRxFr9AG7Ewe1OOAoccWqMf5o0cdEZOXivpbk7KlyN_fbS1MnBieV53vx4ELqmpKSEirtNaT2UFSGzkqiSEHqCJrSWqiCck1M0IUyQoma8OkcXKW1IBrmiE_QxxysYYPQWm24Voh_XPW5MAofNdhuDsWs8BjyuAff-G1zRBwcdNilB33R73PkBMt-ZwfphhbPRdNDj0OJxvwW8WFyis9Z0Ca5-3yl6f3p8e3gplq_Pi4f5srCM87GghkpVUWuEk6y2DUgwUjjCwLK6dpzWDbOcCeraVjbCCikUcWzWMulmDadsim6Pd_OEzx2kUfc-WejyMgi7pCtVCa4Uy-DNH3ATdnHI23RFmZzVVc0zRI-QjSGlCK3eRt-buNeU6ENwvdE5uD4E10TpHDw790cH8je_PESdMjJYcD6CHbUL_h_7B7vRiBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213748285</pqid></control><display><type>article</type><title>A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Simaria, Ana Sofia ; Vilarinho, Pedro M.</creator><creatorcontrib>Simaria, Ana Sofia ; Vilarinho, Pedro M.</creatorcontrib><description>Mixed-model assembly lines allow for the simultaneous assembly of a set of similar models of a product, which may be launched in the assembly line in any order and mix. As current markets are characterized by a growing trend for higher product variability, mixed-model assembly lines are preferred over the traditional single-model assembly lines. This paper presents a mathematical programming model and an iterative genetic algorithm-based procedure for the mixed-model assembly line balancing problem (MALBP) with parallel workstations, in which the goal is to maximise the production rate of the line for a pre-determined number of operators. The addressed problem accounts for some relevant issues that reflect the operating conditions of real-world assembly lines, like zoning constraints and workload balancing and also allows the decision maker to control the generation of parallel workstations.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2004.09.001</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Assembly line balancing ; Assembly lines ; Genetic algorithms ; Mathematical models ; Mathematical programming ; Mixed-model ; Studies ; Work stations</subject><ispartof>Computers &amp; industrial engineering, 2004-12, Vol.47 (4), p.391-407</ispartof><rights>2004 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Dec 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-1a17921ca6d738cbe7ea76d03ec388d518b3c5361dff7b6c67690d34f37d4b513</citedby><cites>FETCH-LOGICAL-c355t-1a17921ca6d738cbe7ea76d03ec388d518b3c5361dff7b6c67690d34f37d4b513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cie.2004.09.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Simaria, Ana Sofia</creatorcontrib><creatorcontrib>Vilarinho, Pedro M.</creatorcontrib><title>A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II</title><title>Computers &amp; industrial engineering</title><description>Mixed-model assembly lines allow for the simultaneous assembly of a set of similar models of a product, which may be launched in the assembly line in any order and mix. As current markets are characterized by a growing trend for higher product variability, mixed-model assembly lines are preferred over the traditional single-model assembly lines. This paper presents a mathematical programming model and an iterative genetic algorithm-based procedure for the mixed-model assembly line balancing problem (MALBP) with parallel workstations, in which the goal is to maximise the production rate of the line for a pre-determined number of operators. The addressed problem accounts for some relevant issues that reflect the operating conditions of real-world assembly lines, like zoning constraints and workload balancing and also allows the decision maker to control the generation of parallel workstations.</description><subject>Assembly line balancing</subject><subject>Assembly lines</subject><subject>Genetic algorithms</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mixed-model</subject><subject>Studies</subject><subject>Work stations</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PAyEYh4nRxFr9AG7Ewe1OOAoccWqMf5o0cdEZOXivpbk7KlyN_fbS1MnBieV53vx4ELqmpKSEirtNaT2UFSGzkqiSEHqCJrSWqiCck1M0IUyQoma8OkcXKW1IBrmiE_QxxysYYPQWm24Voh_XPW5MAofNdhuDsWs8BjyuAff-G1zRBwcdNilB33R73PkBMt-ZwfphhbPRdNDj0OJxvwW8WFyis9Z0Ca5-3yl6f3p8e3gplq_Pi4f5srCM87GghkpVUWuEk6y2DUgwUjjCwLK6dpzWDbOcCeraVjbCCikUcWzWMulmDadsim6Pd_OEzx2kUfc-WejyMgi7pCtVCa4Uy-DNH3ATdnHI23RFmZzVVc0zRI-QjSGlCK3eRt-buNeU6ENwvdE5uD4E10TpHDw790cH8je_PESdMjJYcD6CHbUL_h_7B7vRiBw</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Simaria, Ana Sofia</creator><creator>Vilarinho, Pedro M.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041201</creationdate><title>A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II</title><author>Simaria, Ana Sofia ; Vilarinho, Pedro M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-1a17921ca6d738cbe7ea76d03ec388d518b3c5361dff7b6c67690d34f37d4b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Assembly line balancing</topic><topic>Assembly lines</topic><topic>Genetic algorithms</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mixed-model</topic><topic>Studies</topic><topic>Work stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simaria, Ana Sofia</creatorcontrib><creatorcontrib>Vilarinho, Pedro M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simaria, Ana Sofia</au><au>Vilarinho, Pedro M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>47</volume><issue>4</issue><spage>391</spage><epage>407</epage><pages>391-407</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>Mixed-model assembly lines allow for the simultaneous assembly of a set of similar models of a product, which may be launched in the assembly line in any order and mix. As current markets are characterized by a growing trend for higher product variability, mixed-model assembly lines are preferred over the traditional single-model assembly lines. This paper presents a mathematical programming model and an iterative genetic algorithm-based procedure for the mixed-model assembly line balancing problem (MALBP) with parallel workstations, in which the goal is to maximise the production rate of the line for a pre-determined number of operators. The addressed problem accounts for some relevant issues that reflect the operating conditions of real-world assembly lines, like zoning constraints and workload balancing and also allows the decision maker to control the generation of parallel workstations.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2004.09.001</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2004-12, Vol.47 (4), p.391-407
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_miscellaneous_29265993
source ScienceDirect Journals (5 years ago - present)
subjects Assembly line balancing
Assembly lines
Genetic algorithms
Mathematical models
Mathematical programming
Mixed-model
Studies
Work stations
title A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20genetic%20algorithm%20based%20approach%20to%20the%20mixed-model%20assembly%20line%20balancing%20problem%20of%20type%20II&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Simaria,%20Ana%20Sofia&rft.date=2004-12-01&rft.volume=47&rft.issue=4&rft.spage=391&rft.epage=407&rft.pages=391-407&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2004.09.001&rft_dat=%3Cproquest_cross%3E29265993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213748285&rft_id=info:pmid/&rft_els_id=S0360835204001275&rfr_iscdi=true