A homogenization method for estimating the bearing capacity of soils reinforced by columns
The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2005-08, Vol.29 (10), p.989-1004 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1004 |
---|---|
container_issue | 10 |
container_start_page | 989 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 29 |
creator | Jellali, B. Bouassida, M. de Buhan, P. |
description | The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown that such a problem may be dealt with as a plane strain yield design problem, provided that the reinforced soil macroscopic strength condition has been previously determined. Lower and upper bound estimates for such a macroscopic criterion are obtained, thus giving evidence of the reinforced soil strong anisotropy. Performing the upper bound kinematic approach on the homogenized bearing capacity problem, by using the classical Prandtl's failure mechanism, makes it then possible to derive analytical upper bound estimates for the reinforced foundation bearing capacity, as a function of the reinforced soil parameters (volume fraction and cohesion ratio), as well as of the relative extension of the reinforced area. It is shown in particular that such an estimate is closer to the exact value of the ultimate bearing capacity, than that derived from a direct analysis which implicitly assumes that the reinforced soil is an isotropic material. Copyright © 2005 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nag.441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29265591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29265591</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4801-ff4583342524536f13b8ecae0296c0194ab10503523a93ee0e6037b1097e0cec3</originalsourceid><addsrcrecordid>eNqF0E1v1DAQBmALgcRSEH_BF-BQpYwzthMfVxXdViptD3yJi-V1J7uGJF7srGD59bhKBSfUk63x41ejl7GXAk4EQP12dJsTKcUjthBgdGVahY_ZAlBjZUCLp-xZzt8AQJXXBfu65Ns4xA2N4bebQhz5QNM23vIuJk55CkOZjhs-bYmvyaW7u3c758N04LHjOYY-80RhLB883fL1gfvY74cxP2dPOtdnenF_HrGPZ-8-nJ5Xl9eri9PlZeVkC6LqOqlaRFmrWirUncB1S94R1EZ7EEa6tSjLoqrRGSQC0oBNmZmGwJPHI_Z6zt2l-GNfdrZDyJ763o0U99nWptZKGfEwbAXqWsoC38zQp5hzos7uUikiHawAe1eyLSXbUnKRr-4jXfau75Ibfcj_eAMCUbfFHc_uZ-jp8L84e7VczanVrEOe6Ndf7dJ3qxtslP18tbJfpPz0_mYl7A3-AYm3mIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28136244</pqid></control><display><type>article</type><title>A homogenization method for estimating the bearing capacity of soils reinforced by columns</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Jellali, B. ; Bouassida, M. ; de Buhan, P.</creator><creatorcontrib>Jellali, B. ; Bouassida, M. ; de Buhan, P.</creatorcontrib><description>The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown that such a problem may be dealt with as a plane strain yield design problem, provided that the reinforced soil macroscopic strength condition has been previously determined. Lower and upper bound estimates for such a macroscopic criterion are obtained, thus giving evidence of the reinforced soil strong anisotropy. Performing the upper bound kinematic approach on the homogenized bearing capacity problem, by using the classical Prandtl's failure mechanism, makes it then possible to derive analytical upper bound estimates for the reinforced foundation bearing capacity, as a function of the reinforced soil parameters (volume fraction and cohesion ratio), as well as of the relative extension of the reinforced area. It is shown in particular that such an estimate is closer to the exact value of the ultimate bearing capacity, than that derived from a direct analysis which implicitly assumes that the reinforced soil is an isotropic material. Copyright © 2005 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.441</identifier><identifier>CODEN: IJNGDZ</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Applied sciences ; bearing capacity ; Buildings. Public works ; cohesion ratio ; columns ; Computation methods. Tables. Charts ; Earthwork. Foundations. Retaining walls ; Exact sciences and technology ; Geotechnics ; homogenization theory ; macroscopic strength criterion ; reinforced soil ; Stabilization. Consolidation ; Structural analysis. Stresses ; substitution factor ; upper bound ; yield design theory</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2005-08, Vol.29 (10), p.989-1004</ispartof><rights>Copyright © 2005 John Wiley & Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4801-ff4583342524536f13b8ecae0296c0194ab10503523a93ee0e6037b1097e0cec3</citedby><cites>FETCH-LOGICAL-a4801-ff4583342524536f13b8ecae0296c0194ab10503523a93ee0e6037b1097e0cec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17013368$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jellali, B.</creatorcontrib><creatorcontrib>Bouassida, M.</creatorcontrib><creatorcontrib>de Buhan, P.</creatorcontrib><title>A homogenization method for estimating the bearing capacity of soils reinforced by columns</title><title>International journal for numerical and analytical methods in geomechanics</title><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><description>The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown that such a problem may be dealt with as a plane strain yield design problem, provided that the reinforced soil macroscopic strength condition has been previously determined. Lower and upper bound estimates for such a macroscopic criterion are obtained, thus giving evidence of the reinforced soil strong anisotropy. Performing the upper bound kinematic approach on the homogenized bearing capacity problem, by using the classical Prandtl's failure mechanism, makes it then possible to derive analytical upper bound estimates for the reinforced foundation bearing capacity, as a function of the reinforced soil parameters (volume fraction and cohesion ratio), as well as of the relative extension of the reinforced area. It is shown in particular that such an estimate is closer to the exact value of the ultimate bearing capacity, than that derived from a direct analysis which implicitly assumes that the reinforced soil is an isotropic material. Copyright © 2005 John Wiley & Sons, Ltd.</description><subject>Applied sciences</subject><subject>bearing capacity</subject><subject>Buildings. Public works</subject><subject>cohesion ratio</subject><subject>columns</subject><subject>Computation methods. Tables. Charts</subject><subject>Earthwork. Foundations. Retaining walls</subject><subject>Exact sciences and technology</subject><subject>Geotechnics</subject><subject>homogenization theory</subject><subject>macroscopic strength criterion</subject><subject>reinforced soil</subject><subject>Stabilization. Consolidation</subject><subject>Structural analysis. Stresses</subject><subject>substitution factor</subject><subject>upper bound</subject><subject>yield design theory</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0E1v1DAQBmALgcRSEH_BF-BQpYwzthMfVxXdViptD3yJi-V1J7uGJF7srGD59bhKBSfUk63x41ejl7GXAk4EQP12dJsTKcUjthBgdGVahY_ZAlBjZUCLp-xZzt8AQJXXBfu65Ns4xA2N4bebQhz5QNM23vIuJk55CkOZjhs-bYmvyaW7u3c758N04LHjOYY-80RhLB883fL1gfvY74cxP2dPOtdnenF_HrGPZ-8-nJ5Xl9eri9PlZeVkC6LqOqlaRFmrWirUncB1S94R1EZ7EEa6tSjLoqrRGSQC0oBNmZmGwJPHI_Z6zt2l-GNfdrZDyJ763o0U99nWptZKGfEwbAXqWsoC38zQp5hzos7uUikiHawAe1eyLSXbUnKRr-4jXfau75Ibfcj_eAMCUbfFHc_uZ-jp8L84e7VczanVrEOe6Ndf7dJ3qxtslP18tbJfpPz0_mYl7A3-AYm3mIA</recordid><startdate>20050825</startdate><enddate>20050825</enddate><creator>Jellali, B.</creator><creator>Bouassida, M.</creator><creator>de Buhan, P.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TB</scope></search><sort><creationdate>20050825</creationdate><title>A homogenization method for estimating the bearing capacity of soils reinforced by columns</title><author>Jellali, B. ; Bouassida, M. ; de Buhan, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4801-ff4583342524536f13b8ecae0296c0194ab10503523a93ee0e6037b1097e0cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>bearing capacity</topic><topic>Buildings. Public works</topic><topic>cohesion ratio</topic><topic>columns</topic><topic>Computation methods. Tables. Charts</topic><topic>Earthwork. Foundations. Retaining walls</topic><topic>Exact sciences and technology</topic><topic>Geotechnics</topic><topic>homogenization theory</topic><topic>macroscopic strength criterion</topic><topic>reinforced soil</topic><topic>Stabilization. Consolidation</topic><topic>Structural analysis. Stresses</topic><topic>substitution factor</topic><topic>upper bound</topic><topic>yield design theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jellali, B.</creatorcontrib><creatorcontrib>Bouassida, M.</creatorcontrib><creatorcontrib>de Buhan, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jellali, B.</au><au>Bouassida, M.</au><au>de Buhan, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A homogenization method for estimating the bearing capacity of soils reinforced by columns</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><date>2005-08-25</date><risdate>2005</risdate><volume>29</volume><issue>10</issue><spage>989</spage><epage>1004</epage><pages>989-1004</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><coden>IJNGDZ</coden><abstract>The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown that such a problem may be dealt with as a plane strain yield design problem, provided that the reinforced soil macroscopic strength condition has been previously determined. Lower and upper bound estimates for such a macroscopic criterion are obtained, thus giving evidence of the reinforced soil strong anisotropy. Performing the upper bound kinematic approach on the homogenized bearing capacity problem, by using the classical Prandtl's failure mechanism, makes it then possible to derive analytical upper bound estimates for the reinforced foundation bearing capacity, as a function of the reinforced soil parameters (volume fraction and cohesion ratio), as well as of the relative extension of the reinforced area. It is shown in particular that such an estimate is closer to the exact value of the ultimate bearing capacity, than that derived from a direct analysis which implicitly assumes that the reinforced soil is an isotropic material. Copyright © 2005 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nag.441</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2005-08, Vol.29 (10), p.989-1004 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_proquest_miscellaneous_29265591 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Applied sciences bearing capacity Buildings. Public works cohesion ratio columns Computation methods. Tables. Charts Earthwork. Foundations. Retaining walls Exact sciences and technology Geotechnics homogenization theory macroscopic strength criterion reinforced soil Stabilization. Consolidation Structural analysis. Stresses substitution factor upper bound yield design theory |
title | A homogenization method for estimating the bearing capacity of soils reinforced by columns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20homogenization%20method%20for%20estimating%20the%20bearing%20capacity%20of%20soils%20reinforced%20by%20columns&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Jellali,%20B.&rft.date=2005-08-25&rft.volume=29&rft.issue=10&rft.spage=989&rft.epage=1004&rft.pages=989-1004&rft.issn=0363-9061&rft.eissn=1096-9853&rft.coden=IJNGDZ&rft_id=info:doi/10.1002/nag.441&rft_dat=%3Cproquest_cross%3E29265591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28136244&rft_id=info:pmid/&rfr_iscdi=true |