A homogenization method for estimating the bearing capacity of soils reinforced by columns

The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2005-08, Vol.29 (10), p.989-1004
Hauptverfasser: Jellali, B., Bouassida, M., de Buhan, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 10
container_start_page 989
container_title International journal for numerical and analytical methods in geomechanics
container_volume 29
creator Jellali, B.
Bouassida, M.
de Buhan, P.
description The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown that such a problem may be dealt with as a plane strain yield design problem, provided that the reinforced soil macroscopic strength condition has been previously determined. Lower and upper bound estimates for such a macroscopic criterion are obtained, thus giving evidence of the reinforced soil strong anisotropy. Performing the upper bound kinematic approach on the homogenized bearing capacity problem, by using the classical Prandtl's failure mechanism, makes it then possible to derive analytical upper bound estimates for the reinforced foundation bearing capacity, as a function of the reinforced soil parameters (volume fraction and cohesion ratio), as well as of the relative extension of the reinforced area. It is shown in particular that such an estimate is closer to the exact value of the ultimate bearing capacity, than that derived from a direct analysis which implicitly assumes that the reinforced soil is an isotropic material. Copyright © 2005 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nag.441
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29265591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29265591</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4801-ff4583342524536f13b8ecae0296c0194ab10503523a93ee0e6037b1097e0cec3</originalsourceid><addsrcrecordid>eNqF0E1v1DAQBmALgcRSEH_BF-BQpYwzthMfVxXdViptD3yJi-V1J7uGJF7srGD59bhKBSfUk63x41ejl7GXAk4EQP12dJsTKcUjthBgdGVahY_ZAlBjZUCLp-xZzt8AQJXXBfu65Ns4xA2N4bebQhz5QNM23vIuJk55CkOZjhs-bYmvyaW7u3c758N04LHjOYY-80RhLB883fL1gfvY74cxP2dPOtdnenF_HrGPZ-8-nJ5Xl9eri9PlZeVkC6LqOqlaRFmrWirUncB1S94R1EZ7EEa6tSjLoqrRGSQC0oBNmZmGwJPHI_Z6zt2l-GNfdrZDyJ763o0U99nWptZKGfEwbAXqWsoC38zQp5hzos7uUikiHawAe1eyLSXbUnKRr-4jXfau75Ibfcj_eAMCUbfFHc_uZ-jp8L84e7VczanVrEOe6Ndf7dJ3qxtslP18tbJfpPz0_mYl7A3-AYm3mIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28136244</pqid></control><display><type>article</type><title>A homogenization method for estimating the bearing capacity of soils reinforced by columns</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Jellali, B. ; Bouassida, M. ; de Buhan, P.</creator><creatorcontrib>Jellali, B. ; Bouassida, M. ; de Buhan, P.</creatorcontrib><description>The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown that such a problem may be dealt with as a plane strain yield design problem, provided that the reinforced soil macroscopic strength condition has been previously determined. Lower and upper bound estimates for such a macroscopic criterion are obtained, thus giving evidence of the reinforced soil strong anisotropy. Performing the upper bound kinematic approach on the homogenized bearing capacity problem, by using the classical Prandtl's failure mechanism, makes it then possible to derive analytical upper bound estimates for the reinforced foundation bearing capacity, as a function of the reinforced soil parameters (volume fraction and cohesion ratio), as well as of the relative extension of the reinforced area. It is shown in particular that such an estimate is closer to the exact value of the ultimate bearing capacity, than that derived from a direct analysis which implicitly assumes that the reinforced soil is an isotropic material. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.441</identifier><identifier>CODEN: IJNGDZ</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied sciences ; bearing capacity ; Buildings. Public works ; cohesion ratio ; columns ; Computation methods. Tables. Charts ; Earthwork. Foundations. Retaining walls ; Exact sciences and technology ; Geotechnics ; homogenization theory ; macroscopic strength criterion ; reinforced soil ; Stabilization. Consolidation ; Structural analysis. Stresses ; substitution factor ; upper bound ; yield design theory</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2005-08, Vol.29 (10), p.989-1004</ispartof><rights>Copyright © 2005 John Wiley &amp; Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4801-ff4583342524536f13b8ecae0296c0194ab10503523a93ee0e6037b1097e0cec3</citedby><cites>FETCH-LOGICAL-a4801-ff4583342524536f13b8ecae0296c0194ab10503523a93ee0e6037b1097e0cec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17013368$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jellali, B.</creatorcontrib><creatorcontrib>Bouassida, M.</creatorcontrib><creatorcontrib>de Buhan, P.</creatorcontrib><title>A homogenization method for estimating the bearing capacity of soils reinforced by columns</title><title>International journal for numerical and analytical methods in geomechanics</title><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><description>The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown that such a problem may be dealt with as a plane strain yield design problem, provided that the reinforced soil macroscopic strength condition has been previously determined. Lower and upper bound estimates for such a macroscopic criterion are obtained, thus giving evidence of the reinforced soil strong anisotropy. Performing the upper bound kinematic approach on the homogenized bearing capacity problem, by using the classical Prandtl's failure mechanism, makes it then possible to derive analytical upper bound estimates for the reinforced foundation bearing capacity, as a function of the reinforced soil parameters (volume fraction and cohesion ratio), as well as of the relative extension of the reinforced area. It is shown in particular that such an estimate is closer to the exact value of the ultimate bearing capacity, than that derived from a direct analysis which implicitly assumes that the reinforced soil is an isotropic material. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>bearing capacity</subject><subject>Buildings. Public works</subject><subject>cohesion ratio</subject><subject>columns</subject><subject>Computation methods. Tables. Charts</subject><subject>Earthwork. Foundations. Retaining walls</subject><subject>Exact sciences and technology</subject><subject>Geotechnics</subject><subject>homogenization theory</subject><subject>macroscopic strength criterion</subject><subject>reinforced soil</subject><subject>Stabilization. Consolidation</subject><subject>Structural analysis. Stresses</subject><subject>substitution factor</subject><subject>upper bound</subject><subject>yield design theory</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0E1v1DAQBmALgcRSEH_BF-BQpYwzthMfVxXdViptD3yJi-V1J7uGJF7srGD59bhKBSfUk63x41ejl7GXAk4EQP12dJsTKcUjthBgdGVahY_ZAlBjZUCLp-xZzt8AQJXXBfu65Ns4xA2N4bebQhz5QNM23vIuJk55CkOZjhs-bYmvyaW7u3c758N04LHjOYY-80RhLB883fL1gfvY74cxP2dPOtdnenF_HrGPZ-8-nJ5Xl9eri9PlZeVkC6LqOqlaRFmrWirUncB1S94R1EZ7EEa6tSjLoqrRGSQC0oBNmZmGwJPHI_Z6zt2l-GNfdrZDyJ763o0U99nWptZKGfEwbAXqWsoC38zQp5hzos7uUikiHawAe1eyLSXbUnKRr-4jXfau75Ibfcj_eAMCUbfFHc_uZ-jp8L84e7VczanVrEOe6Ndf7dJ3qxtslP18tbJfpPz0_mYl7A3-AYm3mIA</recordid><startdate>20050825</startdate><enddate>20050825</enddate><creator>Jellali, B.</creator><creator>Bouassida, M.</creator><creator>de Buhan, P.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TB</scope></search><sort><creationdate>20050825</creationdate><title>A homogenization method for estimating the bearing capacity of soils reinforced by columns</title><author>Jellali, B. ; Bouassida, M. ; de Buhan, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4801-ff4583342524536f13b8ecae0296c0194ab10503523a93ee0e6037b1097e0cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>bearing capacity</topic><topic>Buildings. Public works</topic><topic>cohesion ratio</topic><topic>columns</topic><topic>Computation methods. Tables. Charts</topic><topic>Earthwork. Foundations. Retaining walls</topic><topic>Exact sciences and technology</topic><topic>Geotechnics</topic><topic>homogenization theory</topic><topic>macroscopic strength criterion</topic><topic>reinforced soil</topic><topic>Stabilization. Consolidation</topic><topic>Structural analysis. Stresses</topic><topic>substitution factor</topic><topic>upper bound</topic><topic>yield design theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jellali, B.</creatorcontrib><creatorcontrib>Bouassida, M.</creatorcontrib><creatorcontrib>de Buhan, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jellali, B.</au><au>Bouassida, M.</au><au>de Buhan, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A homogenization method for estimating the bearing capacity of soils reinforced by columns</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><date>2005-08-25</date><risdate>2005</risdate><volume>29</volume><issue>10</issue><spage>989</spage><epage>1004</epage><pages>989-1004</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><coden>IJNGDZ</coden><abstract>The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown that such a problem may be dealt with as a plane strain yield design problem, provided that the reinforced soil macroscopic strength condition has been previously determined. Lower and upper bound estimates for such a macroscopic criterion are obtained, thus giving evidence of the reinforced soil strong anisotropy. Performing the upper bound kinematic approach on the homogenized bearing capacity problem, by using the classical Prandtl's failure mechanism, makes it then possible to derive analytical upper bound estimates for the reinforced foundation bearing capacity, as a function of the reinforced soil parameters (volume fraction and cohesion ratio), as well as of the relative extension of the reinforced area. It is shown in particular that such an estimate is closer to the exact value of the ultimate bearing capacity, than that derived from a direct analysis which implicitly assumes that the reinforced soil is an isotropic material. Copyright © 2005 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nag.441</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2005-08, Vol.29 (10), p.989-1004
issn 0363-9061
1096-9853
language eng
recordid cdi_proquest_miscellaneous_29265591
source Wiley Online Library - AutoHoldings Journals
subjects Applied sciences
bearing capacity
Buildings. Public works
cohesion ratio
columns
Computation methods. Tables. Charts
Earthwork. Foundations. Retaining walls
Exact sciences and technology
Geotechnics
homogenization theory
macroscopic strength criterion
reinforced soil
Stabilization. Consolidation
Structural analysis. Stresses
substitution factor
upper bound
yield design theory
title A homogenization method for estimating the bearing capacity of soils reinforced by columns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20homogenization%20method%20for%20estimating%20the%20bearing%20capacity%20of%20soils%20reinforced%20by%20columns&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Jellali,%20B.&rft.date=2005-08-25&rft.volume=29&rft.issue=10&rft.spage=989&rft.epage=1004&rft.pages=989-1004&rft.issn=0363-9061&rft.eissn=1096-9853&rft.coden=IJNGDZ&rft_id=info:doi/10.1002/nag.441&rft_dat=%3Cproquest_cross%3E29265591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28136244&rft_id=info:pmid/&rfr_iscdi=true