Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects

The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that the spin axis describes a rhumb-line path on the unit-sphere. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2006-11, Vol.29 (6), p.1384-1394
1. Verfasser: Van Der Ha, Jozef C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1394
container_issue 6
container_start_page 1384
container_title Journal of guidance, control, and dynamics
container_volume 29
creator Van Der Ha, Jozef C
description The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that the spin axis describes a rhumb-line path on the unit-sphere. The rhumb-line equations are derived from first principles and are interpreted and visualized in geometrical terms. Thruster performance parameters (i.e., the magnitude and centroid time of the thrust pulses) constitute the principal error sources governing the accuracy of the maneuver. These errors affect the total maneuver path length and its inertial heading direction, that is, the rhumb angle. An analytical model is constructed for describing the propagation of path-length and rhumb-angle errors into the resulting attitude at the conclusion of the maneuver. Detailed simulations with relevance to actual spacecraft applications have been performed to arrive at an understanding of the expected error magnification for different maneuver input parameters and initial conditions. Finally, a model is also presented for the propagation of the statistical characteristics of the input errors into the resulting error covariances of the final attitude parameters. [PUBLISHER ABSTRACT]
doi_str_mv 10.2514/1.18937
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29264753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29264753</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-ea755af9e03abcfa8c6cac73b54e98d77304beaa37a5196f0822d79701df97e13</originalsourceid><addsrcrecordid>eNpt0F1LwzAUBuAgCs4p_oWCX3jRmTRt01yOsamwoYheh9M00Y6umUkq-u_N7EAZXp2bh_e85yB0SvAoyUh6Q0ak4JTtoQHJKI1pUaT7aIAZJXGGOT5ER84tMSY0J2yAZgtTqcZF2tjo6a1blfG8blU09r72XaWiBbSq-1DWRdBW0dTa4B6tWcMr-Nq00VRrJb07RgcaGqdOtnOIXmbT58ldPH-4vZ-M5zFQxnysgGUZaK4whVJqKGQuQTJaZqniRcUYxWmpIGDICM81LpKkYpxhUmnOFKFDdNnnrq1575TzYlU7qZom1DSdEwlP8pSFu4fobAcuTWfb0E0QmvAU55jnQV31SlrjnFVarG29AvslCBabbwoifr4Z5MU2D5yERltoZe1-eZHwDNNNweveQQ3wZ2cfI9aVFrprGq8-fbDn_9qd1d8ptIxK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1329406096</pqid></control><display><type>article</type><title>Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects</title><source>Alma/SFX Local Collection</source><creator>Van Der Ha, Jozef C</creator><creatorcontrib>Van Der Ha, Jozef C</creatorcontrib><description>The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that the spin axis describes a rhumb-line path on the unit-sphere. The rhumb-line equations are derived from first principles and are interpreted and visualized in geometrical terms. Thruster performance parameters (i.e., the magnitude and centroid time of the thrust pulses) constitute the principal error sources governing the accuracy of the maneuver. These errors affect the total maneuver path length and its inertial heading direction, that is, the rhumb angle. An analytical model is constructed for describing the propagation of path-length and rhumb-angle errors into the resulting attitude at the conclusion of the maneuver. Detailed simulations with relevance to actual spacecraft applications have been performed to arrive at an understanding of the expected error magnification for different maneuver input parameters and initial conditions. Finally, a model is also presented for the propagation of the statistical characteristics of the input errors into the resulting error covariances of the final attitude parameters. [PUBLISHER ABSTRACT]</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.18937</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Applied sciences ; Communications satellites ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Orbits ; Physics ; Propagation ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics</subject><ispartof>Journal of guidance, control, and dynamics, 2006-11, Vol.29 (6), p.1384-1394</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Nov-Dec 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-ea755af9e03abcfa8c6cac73b54e98d77304beaa37a5196f0822d79701df97e13</citedby><cites>FETCH-LOGICAL-a377t-ea755af9e03abcfa8c6cac73b54e98d77304beaa37a5196f0822d79701df97e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18295031$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Der Ha, Jozef C</creatorcontrib><title>Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects</title><title>Journal of guidance, control, and dynamics</title><description>The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that the spin axis describes a rhumb-line path on the unit-sphere. The rhumb-line equations are derived from first principles and are interpreted and visualized in geometrical terms. Thruster performance parameters (i.e., the magnitude and centroid time of the thrust pulses) constitute the principal error sources governing the accuracy of the maneuver. These errors affect the total maneuver path length and its inertial heading direction, that is, the rhumb angle. An analytical model is constructed for describing the propagation of path-length and rhumb-angle errors into the resulting attitude at the conclusion of the maneuver. Detailed simulations with relevance to actual spacecraft applications have been performed to arrive at an understanding of the expected error magnification for different maneuver input parameters and initial conditions. Finally, a model is also presented for the propagation of the statistical characteristics of the input errors into the resulting error covariances of the final attitude parameters. [PUBLISHER ABSTRACT]</description><subject>Applied sciences</subject><subject>Communications satellites</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Orbits</subject><subject>Physics</subject><subject>Propagation</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpt0F1LwzAUBuAgCs4p_oWCX3jRmTRt01yOsamwoYheh9M00Y6umUkq-u_N7EAZXp2bh_e85yB0SvAoyUh6Q0ak4JTtoQHJKI1pUaT7aIAZJXGGOT5ER84tMSY0J2yAZgtTqcZF2tjo6a1blfG8blU09r72XaWiBbSq-1DWRdBW0dTa4B6tWcMr-Nq00VRrJb07RgcaGqdOtnOIXmbT58ldPH-4vZ-M5zFQxnysgGUZaK4whVJqKGQuQTJaZqniRcUYxWmpIGDICM81LpKkYpxhUmnOFKFDdNnnrq1575TzYlU7qZom1DSdEwlP8pSFu4fobAcuTWfb0E0QmvAU55jnQV31SlrjnFVarG29AvslCBabbwoifr4Z5MU2D5yERltoZe1-eZHwDNNNweveQQ3wZ2cfI9aVFrprGq8-fbDn_9qd1d8ptIxK</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Van Der Ha, Jozef C</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061101</creationdate><title>Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects</title><author>Van Der Ha, Jozef C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-ea755af9e03abcfa8c6cac73b54e98d77304beaa37a5196f0822d79701df97e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Communications satellites</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Orbits</topic><topic>Physics</topic><topic>Propagation</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Der Ha, Jozef C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Der Ha, Jozef C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>29</volume><issue>6</issue><spage>1384</spage><epage>1394</epage><pages>1384-1394</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that the spin axis describes a rhumb-line path on the unit-sphere. The rhumb-line equations are derived from first principles and are interpreted and visualized in geometrical terms. Thruster performance parameters (i.e., the magnitude and centroid time of the thrust pulses) constitute the principal error sources governing the accuracy of the maneuver. These errors affect the total maneuver path length and its inertial heading direction, that is, the rhumb angle. An analytical model is constructed for describing the propagation of path-length and rhumb-angle errors into the resulting attitude at the conclusion of the maneuver. Detailed simulations with relevance to actual spacecraft applications have been performed to arrive at an understanding of the expected error magnification for different maneuver input parameters and initial conditions. Finally, a model is also presented for the propagation of the statistical characteristics of the input errors into the resulting error covariances of the final attitude parameters. [PUBLISHER ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.18937</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2006-11, Vol.29 (6), p.1384-1394
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_miscellaneous_29264753
source Alma/SFX Local Collection
subjects Applied sciences
Communications satellites
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Orbits
Physics
Propagation
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
title Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20for%20Rhumb-Line%20Attitude%20Maneuvers%20and%20Error%20Propagation%20Effects&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Van%20Der%20Ha,%20Jozef%20C&rft.date=2006-11-01&rft.volume=29&rft.issue=6&rft.spage=1384&rft.epage=1394&rft.pages=1384-1394&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.18937&rft_dat=%3Cproquest_pasca%3E29264753%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1329406096&rft_id=info:pmid/&rfr_iscdi=true