Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects
The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that the spin axis describes a rhumb-line path on the unit-sphere. Th...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2006-11, Vol.29 (6), p.1384-1394 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1394 |
---|---|
container_issue | 6 |
container_start_page | 1384 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 29 |
creator | Van Der Ha, Jozef C |
description | The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that the spin axis describes a rhumb-line path on the unit-sphere. The rhumb-line equations are derived from first principles and are interpreted and visualized in geometrical terms. Thruster performance parameters (i.e., the magnitude and centroid time of the thrust pulses) constitute the principal error sources governing the accuracy of the maneuver. These errors affect the total maneuver path length and its inertial heading direction, that is, the rhumb angle. An analytical model is constructed for describing the propagation of path-length and rhumb-angle errors into the resulting attitude at the conclusion of the maneuver. Detailed simulations with relevance to actual spacecraft applications have been performed to arrive at an understanding of the expected error magnification for different maneuver input parameters and initial conditions. Finally, a model is also presented for the propagation of the statistical characteristics of the input errors into the resulting error covariances of the final attitude parameters. [PUBLISHER ABSTRACT] |
doi_str_mv | 10.2514/1.18937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29264753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29264753</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-ea755af9e03abcfa8c6cac73b54e98d77304beaa37a5196f0822d79701df97e13</originalsourceid><addsrcrecordid>eNpt0F1LwzAUBuAgCs4p_oWCX3jRmTRt01yOsamwoYheh9M00Y6umUkq-u_N7EAZXp2bh_e85yB0SvAoyUh6Q0ak4JTtoQHJKI1pUaT7aIAZJXGGOT5ER84tMSY0J2yAZgtTqcZF2tjo6a1blfG8blU09r72XaWiBbSq-1DWRdBW0dTa4B6tWcMr-Nq00VRrJb07RgcaGqdOtnOIXmbT58ldPH-4vZ-M5zFQxnysgGUZaK4whVJqKGQuQTJaZqniRcUYxWmpIGDICM81LpKkYpxhUmnOFKFDdNnnrq1575TzYlU7qZom1DSdEwlP8pSFu4fobAcuTWfb0E0QmvAU55jnQV31SlrjnFVarG29AvslCBabbwoifr4Z5MU2D5yERltoZe1-eZHwDNNNweveQQ3wZ2cfI9aVFrprGq8-fbDn_9qd1d8ptIxK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1329406096</pqid></control><display><type>article</type><title>Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects</title><source>Alma/SFX Local Collection</source><creator>Van Der Ha, Jozef C</creator><creatorcontrib>Van Der Ha, Jozef C</creatorcontrib><description>The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that the spin axis describes a rhumb-line path on the unit-sphere. The rhumb-line equations are derived from first principles and are interpreted and visualized in geometrical terms. Thruster performance parameters (i.e., the magnitude and centroid time of the thrust pulses) constitute the principal error sources governing the accuracy of the maneuver. These errors affect the total maneuver path length and its inertial heading direction, that is, the rhumb angle. An analytical model is constructed for describing the propagation of path-length and rhumb-angle errors into the resulting attitude at the conclusion of the maneuver. Detailed simulations with relevance to actual spacecraft applications have been performed to arrive at an understanding of the expected error magnification for different maneuver input parameters and initial conditions. Finally, a model is also presented for the propagation of the statistical characteristics of the input errors into the resulting error covariances of the final attitude parameters. [PUBLISHER ABSTRACT]</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.18937</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Applied sciences ; Communications satellites ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Orbits ; Physics ; Propagation ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics</subject><ispartof>Journal of guidance, control, and dynamics, 2006-11, Vol.29 (6), p.1384-1394</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Nov-Dec 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-ea755af9e03abcfa8c6cac73b54e98d77304beaa37a5196f0822d79701df97e13</citedby><cites>FETCH-LOGICAL-a377t-ea755af9e03abcfa8c6cac73b54e98d77304beaa37a5196f0822d79701df97e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18295031$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Der Ha, Jozef C</creatorcontrib><title>Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects</title><title>Journal of guidance, control, and dynamics</title><description>The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that the spin axis describes a rhumb-line path on the unit-sphere. The rhumb-line equations are derived from first principles and are interpreted and visualized in geometrical terms. Thruster performance parameters (i.e., the magnitude and centroid time of the thrust pulses) constitute the principal error sources governing the accuracy of the maneuver. These errors affect the total maneuver path length and its inertial heading direction, that is, the rhumb angle. An analytical model is constructed for describing the propagation of path-length and rhumb-angle errors into the resulting attitude at the conclusion of the maneuver. Detailed simulations with relevance to actual spacecraft applications have been performed to arrive at an understanding of the expected error magnification for different maneuver input parameters and initial conditions. Finally, a model is also presented for the propagation of the statistical characteristics of the input errors into the resulting error covariances of the final attitude parameters. [PUBLISHER ABSTRACT]</description><subject>Applied sciences</subject><subject>Communications satellites</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Orbits</subject><subject>Physics</subject><subject>Propagation</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpt0F1LwzAUBuAgCs4p_oWCX3jRmTRt01yOsamwoYheh9M00Y6umUkq-u_N7EAZXp2bh_e85yB0SvAoyUh6Q0ak4JTtoQHJKI1pUaT7aIAZJXGGOT5ER84tMSY0J2yAZgtTqcZF2tjo6a1blfG8blU09r72XaWiBbSq-1DWRdBW0dTa4B6tWcMr-Nq00VRrJb07RgcaGqdOtnOIXmbT58ldPH-4vZ-M5zFQxnysgGUZaK4whVJqKGQuQTJaZqniRcUYxWmpIGDICM81LpKkYpxhUmnOFKFDdNnnrq1575TzYlU7qZom1DSdEwlP8pSFu4fobAcuTWfb0E0QmvAU55jnQV31SlrjnFVarG29AvslCBabbwoifr4Z5MU2D5yERltoZe1-eZHwDNNNweveQQ3wZ2cfI9aVFrprGq8-fbDn_9qd1d8ptIxK</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Van Der Ha, Jozef C</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061101</creationdate><title>Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects</title><author>Van Der Ha, Jozef C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-ea755af9e03abcfa8c6cac73b54e98d77304beaa37a5196f0822d79701df97e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Communications satellites</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Orbits</topic><topic>Physics</topic><topic>Propagation</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Der Ha, Jozef C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Der Ha, Jozef C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>29</volume><issue>6</issue><spage>1384</spage><epage>1394</epage><pages>1384-1394</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>The attitude control of a spin-stabilized spacecraft is usually performed by a forced precession of the spin axis produced by a series of pulsed thrust actuations. A sun sensor is used for the proper timing of the thrust pulses so that the spin axis describes a rhumb-line path on the unit-sphere. The rhumb-line equations are derived from first principles and are interpreted and visualized in geometrical terms. Thruster performance parameters (i.e., the magnitude and centroid time of the thrust pulses) constitute the principal error sources governing the accuracy of the maneuver. These errors affect the total maneuver path length and its inertial heading direction, that is, the rhumb angle. An analytical model is constructed for describing the propagation of path-length and rhumb-angle errors into the resulting attitude at the conclusion of the maneuver. Detailed simulations with relevance to actual spacecraft applications have been performed to arrive at an understanding of the expected error magnification for different maneuver input parameters and initial conditions. Finally, a model is also presented for the propagation of the statistical characteristics of the input errors into the resulting error covariances of the final attitude parameters. [PUBLISHER ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.18937</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2006-11, Vol.29 (6), p.1384-1394 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_miscellaneous_29264753 |
source | Alma/SFX Local Collection |
subjects | Applied sciences Communications satellites Computer science control theory systems Control theory. Systems Exact sciences and technology Fundamental areas of phenomenology (including applications) Orbits Physics Propagation Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics |
title | Models for Rhumb-Line Attitude Maneuvers and Error Propagation Effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20for%20Rhumb-Line%20Attitude%20Maneuvers%20and%20Error%20Propagation%20Effects&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Van%20Der%20Ha,%20Jozef%20C&rft.date=2006-11-01&rft.volume=29&rft.issue=6&rft.spage=1384&rft.epage=1394&rft.pages=1384-1394&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.18937&rft_dat=%3Cproquest_pasca%3E29264753%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1329406096&rft_id=info:pmid/&rfr_iscdi=true |