Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries

To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-02, Vol.16 (7), p.8853-8862
Hauptverfasser: Suh, Joo Hyeong, Choi, Ilyoung, Park, Sungmin, Kim, Dong Ki, Kim, Youngugk, Park, Min-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8862
container_issue 7
container_start_page 8853
container_title ACS applied materials & interfaces
container_volume 16
creator Suh, Joo Hyeong
Choi, Ilyoung
Park, Sungmin
Kim, Dong Ki
Kim, Youngugk
Park, Min-Sik
description To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification of graphite, herein we demonstrate the surface decoration with titanium carbide (TiC) nanocrystals onto graphite particles via a simple wet-coating process. The high electrical conductivity, low Li+ adsorption energy, and small surface diffusion barrier of the TiC nanocrystals facilitate fast Li+ adsorption and migration in the graphite surface by reducing the overpotential upon the charging process. The feasibility of the TiC nanocrystal-decorated graphite (TiC@AG) anode is thoroughly examined with an in-depth understanding of the interfacial reaction mechanism. Furthermore, the full-cell with a commercial cathode (LiNi0.8Co0.1Mn0.1O2) and TiC@AG anode demonstrates an impressive capacity retention (94.5%) after 300 cycles under fast-charging condition (3 C-charging and 1 C-discharging) without any sign of Li plating. The charging time of the TiC@AG full-cell was estimated at 16.2 min (80% of state of charge), which is substantially shorter than that of the artificial graphite full-cell. Our findings offer practical insights into the design principles of advanced graphite anodes, contributing to the realization of fast-charging LIBs.
doi_str_mv 10.1021/acsami.3c17816
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2926081139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926081139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-514f0f9c95bc16b311ffbea715c897d2fa51ac12fdd29211f1445f8063cd83823</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0E4qOwMiKPCCkl58SpM0L5qlTBQJmji2MTV0lcbGfov8eohY3pTrrnfaR7CbmEdAopg1uUHnszzSTMBBQH5BTKPE8E4-zwb8_zE3Lm_TpNi4yl_JicZCLLC8HZKVm_j06jVPRBSeswGDtQq-nKzOkrDla6rQ_YeWqHYGloFX12uGlNUPRusI2ijwPWnfL0CX1I5i26TzN80qUJrRn7ZBFt9xiCckb5c3Kko0pd7OeEfDw9ruYvyfLteTG_WybIBA8Jh1ynupQlryUUdQagda1wBlyKctYwjRxQAtNNw0oWr5DnXIv4m2xEJlg2Idc778bZr1H5UPXGS9V1OCg7-iqmilQAZGVEpztUOuu9U7raONOj21aQVj_9Vrt-q32_MXC1d491r5o__LfQCNzsgBis1nZ0Q3z1P9s3Ba6FiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926081139</pqid></control><display><type>article</type><title>Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries</title><source>ACS Publications</source><creator>Suh, Joo Hyeong ; Choi, Ilyoung ; Park, Sungmin ; Kim, Dong Ki ; Kim, Youngugk ; Park, Min-Sik</creator><creatorcontrib>Suh, Joo Hyeong ; Choi, Ilyoung ; Park, Sungmin ; Kim, Dong Ki ; Kim, Youngugk ; Park, Min-Sik</creatorcontrib><description>To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification of graphite, herein we demonstrate the surface decoration with titanium carbide (TiC) nanocrystals onto graphite particles via a simple wet-coating process. The high electrical conductivity, low Li+ adsorption energy, and small surface diffusion barrier of the TiC nanocrystals facilitate fast Li+ adsorption and migration in the graphite surface by reducing the overpotential upon the charging process. The feasibility of the TiC nanocrystal-decorated graphite (TiC@AG) anode is thoroughly examined with an in-depth understanding of the interfacial reaction mechanism. Furthermore, the full-cell with a commercial cathode (LiNi0.8Co0.1Mn0.1O2) and TiC@AG anode demonstrates an impressive capacity retention (94.5%) after 300 cycles under fast-charging condition (3 C-charging and 1 C-discharging) without any sign of Li plating. The charging time of the TiC@AG full-cell was estimated at 16.2 min (80% of state of charge), which is substantially shorter than that of the artificial graphite full-cell. Our findings offer practical insights into the design principles of advanced graphite anodes, contributing to the realization of fast-charging LIBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c17816</identifier><identifier>PMID: 38346852</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-02, Vol.16 (7), p.8853-8862</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a285t-514f0f9c95bc16b311ffbea715c897d2fa51ac12fdd29211f1445f8063cd83823</cites><orcidid>0000-0003-0966-0753 ; 0000-0002-3490-2999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c17816$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c17816$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38346852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suh, Joo Hyeong</creatorcontrib><creatorcontrib>Choi, Ilyoung</creatorcontrib><creatorcontrib>Park, Sungmin</creatorcontrib><creatorcontrib>Kim, Dong Ki</creatorcontrib><creatorcontrib>Kim, Youngugk</creatorcontrib><creatorcontrib>Park, Min-Sik</creatorcontrib><title>Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification of graphite, herein we demonstrate the surface decoration with titanium carbide (TiC) nanocrystals onto graphite particles via a simple wet-coating process. The high electrical conductivity, low Li+ adsorption energy, and small surface diffusion barrier of the TiC nanocrystals facilitate fast Li+ adsorption and migration in the graphite surface by reducing the overpotential upon the charging process. The feasibility of the TiC nanocrystal-decorated graphite (TiC@AG) anode is thoroughly examined with an in-depth understanding of the interfacial reaction mechanism. Furthermore, the full-cell with a commercial cathode (LiNi0.8Co0.1Mn0.1O2) and TiC@AG anode demonstrates an impressive capacity retention (94.5%) after 300 cycles under fast-charging condition (3 C-charging and 1 C-discharging) without any sign of Li plating. The charging time of the TiC@AG full-cell was estimated at 16.2 min (80% of state of charge), which is substantially shorter than that of the artificial graphite full-cell. Our findings offer practical insights into the design principles of advanced graphite anodes, contributing to the realization of fast-charging LIBs.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0E4qOwMiKPCCkl58SpM0L5qlTBQJmji2MTV0lcbGfov8eohY3pTrrnfaR7CbmEdAopg1uUHnszzSTMBBQH5BTKPE8E4-zwb8_zE3Lm_TpNi4yl_JicZCLLC8HZKVm_j06jVPRBSeswGDtQq-nKzOkrDla6rQ_YeWqHYGloFX12uGlNUPRusI2ijwPWnfL0CX1I5i26TzN80qUJrRn7ZBFt9xiCckb5c3Kko0pd7OeEfDw9ruYvyfLteTG_WybIBA8Jh1ynupQlryUUdQagda1wBlyKctYwjRxQAtNNw0oWr5DnXIv4m2xEJlg2Idc778bZr1H5UPXGS9V1OCg7-iqmilQAZGVEpztUOuu9U7raONOj21aQVj_9Vrt-q32_MXC1d491r5o__LfQCNzsgBis1nZ0Q3z1P9s3Ba6FiA</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Suh, Joo Hyeong</creator><creator>Choi, Ilyoung</creator><creator>Park, Sungmin</creator><creator>Kim, Dong Ki</creator><creator>Kim, Youngugk</creator><creator>Park, Min-Sik</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0966-0753</orcidid><orcidid>https://orcid.org/0000-0002-3490-2999</orcidid></search><sort><creationdate>20240221</creationdate><title>Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries</title><author>Suh, Joo Hyeong ; Choi, Ilyoung ; Park, Sungmin ; Kim, Dong Ki ; Kim, Youngugk ; Park, Min-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-514f0f9c95bc16b311ffbea715c897d2fa51ac12fdd29211f1445f8063cd83823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suh, Joo Hyeong</creatorcontrib><creatorcontrib>Choi, Ilyoung</creatorcontrib><creatorcontrib>Park, Sungmin</creatorcontrib><creatorcontrib>Kim, Dong Ki</creatorcontrib><creatorcontrib>Kim, Youngugk</creatorcontrib><creatorcontrib>Park, Min-Sik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suh, Joo Hyeong</au><au>Choi, Ilyoung</au><au>Park, Sungmin</au><au>Kim, Dong Ki</au><au>Kim, Youngugk</au><au>Park, Min-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-02-21</date><risdate>2024</risdate><volume>16</volume><issue>7</issue><spage>8853</spage><epage>8862</epage><pages>8853-8862</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification of graphite, herein we demonstrate the surface decoration with titanium carbide (TiC) nanocrystals onto graphite particles via a simple wet-coating process. The high electrical conductivity, low Li+ adsorption energy, and small surface diffusion barrier of the TiC nanocrystals facilitate fast Li+ adsorption and migration in the graphite surface by reducing the overpotential upon the charging process. The feasibility of the TiC nanocrystal-decorated graphite (TiC@AG) anode is thoroughly examined with an in-depth understanding of the interfacial reaction mechanism. Furthermore, the full-cell with a commercial cathode (LiNi0.8Co0.1Mn0.1O2) and TiC@AG anode demonstrates an impressive capacity retention (94.5%) after 300 cycles under fast-charging condition (3 C-charging and 1 C-discharging) without any sign of Li plating. The charging time of the TiC@AG full-cell was estimated at 16.2 min (80% of state of charge), which is substantially shorter than that of the artificial graphite full-cell. Our findings offer practical insights into the design principles of advanced graphite anodes, contributing to the realization of fast-charging LIBs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38346852</pmid><doi>10.1021/acsami.3c17816</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0966-0753</orcidid><orcidid>https://orcid.org/0000-0002-3490-2999</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-02, Vol.16 (7), p.8853-8862
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2926081139
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Decoration%20of%20TiC%20Nanocrystals%20onto%20the%20Graphite%20Anode%20Enables%20Fast-Charging%20Lithium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Suh,%20Joo%20Hyeong&rft.date=2024-02-21&rft.volume=16&rft.issue=7&rft.spage=8853&rft.epage=8862&rft.pages=8853-8862&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c17816&rft_dat=%3Cproquest_cross%3E2926081139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926081139&rft_id=info:pmid/38346852&rfr_iscdi=true