Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries
To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-02, Vol.16 (7), p.8853-8862 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8862 |
---|---|
container_issue | 7 |
container_start_page | 8853 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Suh, Joo Hyeong Choi, Ilyoung Park, Sungmin Kim, Dong Ki Kim, Youngugk Park, Min-Sik |
description | To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification of graphite, herein we demonstrate the surface decoration with titanium carbide (TiC) nanocrystals onto graphite particles via a simple wet-coating process. The high electrical conductivity, low Li+ adsorption energy, and small surface diffusion barrier of the TiC nanocrystals facilitate fast Li+ adsorption and migration in the graphite surface by reducing the overpotential upon the charging process. The feasibility of the TiC nanocrystal-decorated graphite (TiC@AG) anode is thoroughly examined with an in-depth understanding of the interfacial reaction mechanism. Furthermore, the full-cell with a commercial cathode (LiNi0.8Co0.1Mn0.1O2) and TiC@AG anode demonstrates an impressive capacity retention (94.5%) after 300 cycles under fast-charging condition (3 C-charging and 1 C-discharging) without any sign of Li plating. The charging time of the TiC@AG full-cell was estimated at 16.2 min (80% of state of charge), which is substantially shorter than that of the artificial graphite full-cell. Our findings offer practical insights into the design principles of advanced graphite anodes, contributing to the realization of fast-charging LIBs. |
doi_str_mv | 10.1021/acsami.3c17816 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2926081139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926081139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-514f0f9c95bc16b311ffbea715c897d2fa51ac12fdd29211f1445f8063cd83823</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0E4qOwMiKPCCkl58SpM0L5qlTBQJmji2MTV0lcbGfov8eohY3pTrrnfaR7CbmEdAopg1uUHnszzSTMBBQH5BTKPE8E4-zwb8_zE3Lm_TpNi4yl_JicZCLLC8HZKVm_j06jVPRBSeswGDtQq-nKzOkrDla6rQ_YeWqHYGloFX12uGlNUPRusI2ijwPWnfL0CX1I5i26TzN80qUJrRn7ZBFt9xiCckb5c3Kko0pd7OeEfDw9ruYvyfLteTG_WybIBA8Jh1ynupQlryUUdQagda1wBlyKctYwjRxQAtNNw0oWr5DnXIv4m2xEJlg2Idc778bZr1H5UPXGS9V1OCg7-iqmilQAZGVEpztUOuu9U7raONOj21aQVj_9Vrt-q32_MXC1d491r5o__LfQCNzsgBis1nZ0Q3z1P9s3Ba6FiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926081139</pqid></control><display><type>article</type><title>Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries</title><source>ACS Publications</source><creator>Suh, Joo Hyeong ; Choi, Ilyoung ; Park, Sungmin ; Kim, Dong Ki ; Kim, Youngugk ; Park, Min-Sik</creator><creatorcontrib>Suh, Joo Hyeong ; Choi, Ilyoung ; Park, Sungmin ; Kim, Dong Ki ; Kim, Youngugk ; Park, Min-Sik</creatorcontrib><description>To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification of graphite, herein we demonstrate the surface decoration with titanium carbide (TiC) nanocrystals onto graphite particles via a simple wet-coating process. The high electrical conductivity, low Li+ adsorption energy, and small surface diffusion barrier of the TiC nanocrystals facilitate fast Li+ adsorption and migration in the graphite surface by reducing the overpotential upon the charging process. The feasibility of the TiC nanocrystal-decorated graphite (TiC@AG) anode is thoroughly examined with an in-depth understanding of the interfacial reaction mechanism. Furthermore, the full-cell with a commercial cathode (LiNi0.8Co0.1Mn0.1O2) and TiC@AG anode demonstrates an impressive capacity retention (94.5%) after 300 cycles under fast-charging condition (3 C-charging and 1 C-discharging) without any sign of Li plating. The charging time of the TiC@AG full-cell was estimated at 16.2 min (80% of state of charge), which is substantially shorter than that of the artificial graphite full-cell. Our findings offer practical insights into the design principles of advanced graphite anodes, contributing to the realization of fast-charging LIBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c17816</identifier><identifier>PMID: 38346852</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2024-02, Vol.16 (7), p.8853-8862</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a285t-514f0f9c95bc16b311ffbea715c897d2fa51ac12fdd29211f1445f8063cd83823</cites><orcidid>0000-0003-0966-0753 ; 0000-0002-3490-2999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c17816$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c17816$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38346852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suh, Joo Hyeong</creatorcontrib><creatorcontrib>Choi, Ilyoung</creatorcontrib><creatorcontrib>Park, Sungmin</creatorcontrib><creatorcontrib>Kim, Dong Ki</creatorcontrib><creatorcontrib>Kim, Youngugk</creatorcontrib><creatorcontrib>Park, Min-Sik</creatorcontrib><title>Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification of graphite, herein we demonstrate the surface decoration with titanium carbide (TiC) nanocrystals onto graphite particles via a simple wet-coating process. The high electrical conductivity, low Li+ adsorption energy, and small surface diffusion barrier of the TiC nanocrystals facilitate fast Li+ adsorption and migration in the graphite surface by reducing the overpotential upon the charging process. The feasibility of the TiC nanocrystal-decorated graphite (TiC@AG) anode is thoroughly examined with an in-depth understanding of the interfacial reaction mechanism. Furthermore, the full-cell with a commercial cathode (LiNi0.8Co0.1Mn0.1O2) and TiC@AG anode demonstrates an impressive capacity retention (94.5%) after 300 cycles under fast-charging condition (3 C-charging and 1 C-discharging) without any sign of Li plating. The charging time of the TiC@AG full-cell was estimated at 16.2 min (80% of state of charge), which is substantially shorter than that of the artificial graphite full-cell. Our findings offer practical insights into the design principles of advanced graphite anodes, contributing to the realization of fast-charging LIBs.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0E4qOwMiKPCCkl58SpM0L5qlTBQJmji2MTV0lcbGfov8eohY3pTrrnfaR7CbmEdAopg1uUHnszzSTMBBQH5BTKPE8E4-zwb8_zE3Lm_TpNi4yl_JicZCLLC8HZKVm_j06jVPRBSeswGDtQq-nKzOkrDla6rQ_YeWqHYGloFX12uGlNUPRusI2ijwPWnfL0CX1I5i26TzN80qUJrRn7ZBFt9xiCckb5c3Kko0pd7OeEfDw9ruYvyfLteTG_WybIBA8Jh1ynupQlryUUdQagda1wBlyKctYwjRxQAtNNw0oWr5DnXIv4m2xEJlg2Idc778bZr1H5UPXGS9V1OCg7-iqmilQAZGVEpztUOuu9U7raONOj21aQVj_9Vrt-q32_MXC1d491r5o__LfQCNzsgBis1nZ0Q3z1P9s3Ba6FiA</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Suh, Joo Hyeong</creator><creator>Choi, Ilyoung</creator><creator>Park, Sungmin</creator><creator>Kim, Dong Ki</creator><creator>Kim, Youngugk</creator><creator>Park, Min-Sik</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0966-0753</orcidid><orcidid>https://orcid.org/0000-0002-3490-2999</orcidid></search><sort><creationdate>20240221</creationdate><title>Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries</title><author>Suh, Joo Hyeong ; Choi, Ilyoung ; Park, Sungmin ; Kim, Dong Ki ; Kim, Youngugk ; Park, Min-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-514f0f9c95bc16b311ffbea715c897d2fa51ac12fdd29211f1445f8063cd83823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suh, Joo Hyeong</creatorcontrib><creatorcontrib>Choi, Ilyoung</creatorcontrib><creatorcontrib>Park, Sungmin</creatorcontrib><creatorcontrib>Kim, Dong Ki</creatorcontrib><creatorcontrib>Kim, Youngugk</creatorcontrib><creatorcontrib>Park, Min-Sik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suh, Joo Hyeong</au><au>Choi, Ilyoung</au><au>Park, Sungmin</au><au>Kim, Dong Ki</au><au>Kim, Youngugk</au><au>Park, Min-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-02-21</date><risdate>2024</risdate><volume>16</volume><issue>7</issue><spage>8853</spage><epage>8862</epage><pages>8853-8862</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification of graphite, herein we demonstrate the surface decoration with titanium carbide (TiC) nanocrystals onto graphite particles via a simple wet-coating process. The high electrical conductivity, low Li+ adsorption energy, and small surface diffusion barrier of the TiC nanocrystals facilitate fast Li+ adsorption and migration in the graphite surface by reducing the overpotential upon the charging process. The feasibility of the TiC nanocrystal-decorated graphite (TiC@AG) anode is thoroughly examined with an in-depth understanding of the interfacial reaction mechanism. Furthermore, the full-cell with a commercial cathode (LiNi0.8Co0.1Mn0.1O2) and TiC@AG anode demonstrates an impressive capacity retention (94.5%) after 300 cycles under fast-charging condition (3 C-charging and 1 C-discharging) without any sign of Li plating. The charging time of the TiC@AG full-cell was estimated at 16.2 min (80% of state of charge), which is substantially shorter than that of the artificial graphite full-cell. Our findings offer practical insights into the design principles of advanced graphite anodes, contributing to the realization of fast-charging LIBs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38346852</pmid><doi>10.1021/acsami.3c17816</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0966-0753</orcidid><orcidid>https://orcid.org/0000-0002-3490-2999</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-02, Vol.16 (7), p.8853-8862 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2926081139 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Decoration%20of%20TiC%20Nanocrystals%20onto%20the%20Graphite%20Anode%20Enables%20Fast-Charging%20Lithium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Suh,%20Joo%20Hyeong&rft.date=2024-02-21&rft.volume=16&rft.issue=7&rft.spage=8853&rft.epage=8862&rft.pages=8853-8862&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c17816&rft_dat=%3Cproquest_cross%3E2926081139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926081139&rft_id=info:pmid/38346852&rfr_iscdi=true |