Electrospun Biomimetic Periosteum Capable of Controlled Release of Multiple Agents for Programmed Promoting Bone Regeneration
The effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healin...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2024-05, Vol.13 (12), p.e2303134 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e2303134 |
container_title | Advanced healthcare materials |
container_volume | 13 |
creator | Zhao, Xingkai Zhuang, Yu Cao, Yongjian Cai, Fengying Lv, Yicheng Zheng, Yunquan Yang, Jianmin Shi, Xianai |
description | The effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healing mechanisms. The biomimetic periosteum is composed of a bilayer with an asymmetric structure in which an aligned electrospun poly(ε-caprolactone)/gelatin/deferoxamine (PCL/GEL/DFO) layer mimics the outer fibrous layer of the periosteum, while a random coaxial electrospun PCL/GEL/aspirin (ASP) shell and PCL/silicon nanoparticles (SiNPs) core layer mimics the inner cambial layer. The bilayer controls the release of ASP, DFO, and SiNPs to precisely regulate the inflammatory, angiogenic, and osteogenic phases of bone repair. The random coaxial inner layer can effectively antioxidize, promoting cell recruitment, proliferation, differentiation, and mineralization, while the aligned outer layer can promote angiogenesis and prevent fibroblast infiltration. In particular, different stages of bone repair are modulated in a rat skull defect model to achieve faster and better bone regeneration. The proposed biomimetic periosteum is expected to be a promising candidate for bone defect healing. |
doi_str_mv | 10.1002/adhm.202303134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2926079605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926079605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-3a942453cccba275fe4a95d77cf95afb12e54e8751b10ffdedc0bbb75854a7a73</originalsourceid><addsrcrecordid>eNpd0b9PJCEUB3BiNGrU1tKQ2NjsHj-GYabUjXqXeNEYrScM89jDwDACU1j4v8uqt4U0vJDPeyHvi9ApJUtKCPulhn9-yQjjhFNe7aBDRlu2YLVod7d1RQ7QSUovpJxa0Lqh--iAN7xqBKWH6P3agc4xpGke8ZUN3nrIVuMHiDakDLPHKzWp3gEOBq_CWKxzMOBHcKDS5-vf2WU7FXG5hjEnbELEDzGso_K-yFL6kO24xldhhNJYFESVbRiP0Z5RLsHJ932Enm-un1a_F3f3t39Wl3cLzWSTF1y1FasE11r3iklhoFKtGKTUphXK9JSBqKCRgvaUGDPAoEnf91I0olJSSX6ELr7mTjG8zpBy523S4JwaIcypYy2riWxrIgo9_0FfwhzH8ruOE0E5qWmzUcsvpcvqUgTTTdF6Fd86SrpNNt0mm26bTWk4-x4792UpW_4_Cf4B9-aL5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051306185</pqid></control><display><type>article</type><title>Electrospun Biomimetic Periosteum Capable of Controlled Release of Multiple Agents for Programmed Promoting Bone Regeneration</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Zhao, Xingkai ; Zhuang, Yu ; Cao, Yongjian ; Cai, Fengying ; Lv, Yicheng ; Zheng, Yunquan ; Yang, Jianmin ; Shi, Xianai</creator><creatorcontrib>Zhao, Xingkai ; Zhuang, Yu ; Cao, Yongjian ; Cai, Fengying ; Lv, Yicheng ; Zheng, Yunquan ; Yang, Jianmin ; Shi, Xianai</creatorcontrib><description>The effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healing mechanisms. The biomimetic periosteum is composed of a bilayer with an asymmetric structure in which an aligned electrospun poly(ε-caprolactone)/gelatin/deferoxamine (PCL/GEL/DFO) layer mimics the outer fibrous layer of the periosteum, while a random coaxial electrospun PCL/GEL/aspirin (ASP) shell and PCL/silicon nanoparticles (SiNPs) core layer mimics the inner cambial layer. The bilayer controls the release of ASP, DFO, and SiNPs to precisely regulate the inflammatory, angiogenic, and osteogenic phases of bone repair. The random coaxial inner layer can effectively antioxidize, promoting cell recruitment, proliferation, differentiation, and mineralization, while the aligned outer layer can promote angiogenesis and prevent fibroblast infiltration. In particular, different stages of bone repair are modulated in a rat skull defect model to achieve faster and better bone regeneration. The proposed biomimetic periosteum is expected to be a promising candidate for bone defect healing.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202303134</identifier><identifier>PMID: 38348511</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Angiogenesis ; Animals ; Aspirin ; Asymmetric structures ; Bilayers ; Biomimetic Materials - chemistry ; Biomimetic Materials - pharmacology ; Biomimetics ; Bone growth ; Bone healing ; Bone Regeneration - drug effects ; Cell differentiation ; Cell Differentiation - drug effects ; Controlled release ; Defects ; Deferoxamine ; Deferoxamine - chemistry ; Deferoxamine - pharmacology ; Delayed-Action Preparations - chemistry ; Delayed-Action Preparations - pharmacokinetics ; Delayed-Action Preparations - pharmacology ; Gelatin ; Gelatin - chemistry ; Healing ; Inflammation ; Male ; Mineralization ; Nanoparticles ; Nanoparticles - chemistry ; Osteogenesis - drug effects ; Periosteum ; Periosteum - drug effects ; Polyesters - chemistry ; Rats ; Rats, Sprague-Dawley ; Regeneration ; Regeneration (physiology) ; Skull - drug effects ; Skull - injuries ; Structure-function relationships ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Advanced healthcare materials, 2024-05, Vol.13 (12), p.e2303134</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-3a942453cccba275fe4a95d77cf95afb12e54e8751b10ffdedc0bbb75854a7a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38348511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xingkai</creatorcontrib><creatorcontrib>Zhuang, Yu</creatorcontrib><creatorcontrib>Cao, Yongjian</creatorcontrib><creatorcontrib>Cai, Fengying</creatorcontrib><creatorcontrib>Lv, Yicheng</creatorcontrib><creatorcontrib>Zheng, Yunquan</creatorcontrib><creatorcontrib>Yang, Jianmin</creatorcontrib><creatorcontrib>Shi, Xianai</creatorcontrib><title>Electrospun Biomimetic Periosteum Capable of Controlled Release of Multiple Agents for Programmed Promoting Bone Regeneration</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healing mechanisms. The biomimetic periosteum is composed of a bilayer with an asymmetric structure in which an aligned electrospun poly(ε-caprolactone)/gelatin/deferoxamine (PCL/GEL/DFO) layer mimics the outer fibrous layer of the periosteum, while a random coaxial electrospun PCL/GEL/aspirin (ASP) shell and PCL/silicon nanoparticles (SiNPs) core layer mimics the inner cambial layer. The bilayer controls the release of ASP, DFO, and SiNPs to precisely regulate the inflammatory, angiogenic, and osteogenic phases of bone repair. The random coaxial inner layer can effectively antioxidize, promoting cell recruitment, proliferation, differentiation, and mineralization, while the aligned outer layer can promote angiogenesis and prevent fibroblast infiltration. In particular, different stages of bone repair are modulated in a rat skull defect model to achieve faster and better bone regeneration. The proposed biomimetic periosteum is expected to be a promising candidate for bone defect healing.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Aspirin</subject><subject>Asymmetric structures</subject><subject>Bilayers</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - pharmacology</subject><subject>Biomimetics</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone Regeneration - drug effects</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>Controlled release</subject><subject>Defects</subject><subject>Deferoxamine</subject><subject>Deferoxamine - chemistry</subject><subject>Deferoxamine - pharmacology</subject><subject>Delayed-Action Preparations - chemistry</subject><subject>Delayed-Action Preparations - pharmacokinetics</subject><subject>Delayed-Action Preparations - pharmacology</subject><subject>Gelatin</subject><subject>Gelatin - chemistry</subject><subject>Healing</subject><subject>Inflammation</subject><subject>Male</subject><subject>Mineralization</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Osteogenesis - drug effects</subject><subject>Periosteum</subject><subject>Periosteum - drug effects</subject><subject>Polyesters - chemistry</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Skull - drug effects</subject><subject>Skull - injuries</subject><subject>Structure-function relationships</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0b9PJCEUB3BiNGrU1tKQ2NjsHj-GYabUjXqXeNEYrScM89jDwDACU1j4v8uqt4U0vJDPeyHvi9ApJUtKCPulhn9-yQjjhFNe7aBDRlu2YLVod7d1RQ7QSUovpJxa0Lqh--iAN7xqBKWH6P3agc4xpGke8ZUN3nrIVuMHiDakDLPHKzWp3gEOBq_CWKxzMOBHcKDS5-vf2WU7FXG5hjEnbELEDzGso_K-yFL6kO24xldhhNJYFESVbRiP0Z5RLsHJ932Enm-un1a_F3f3t39Wl3cLzWSTF1y1FasE11r3iklhoFKtGKTUphXK9JSBqKCRgvaUGDPAoEnf91I0olJSSX6ELr7mTjG8zpBy523S4JwaIcypYy2riWxrIgo9_0FfwhzH8ruOE0E5qWmzUcsvpcvqUgTTTdF6Fd86SrpNNt0mm26bTWk4-x4792UpW_4_Cf4B9-aL5g</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhao, Xingkai</creator><creator>Zhuang, Yu</creator><creator>Cao, Yongjian</creator><creator>Cai, Fengying</creator><creator>Lv, Yicheng</creator><creator>Zheng, Yunquan</creator><creator>Yang, Jianmin</creator><creator>Shi, Xianai</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20240501</creationdate><title>Electrospun Biomimetic Periosteum Capable of Controlled Release of Multiple Agents for Programmed Promoting Bone Regeneration</title><author>Zhao, Xingkai ; Zhuang, Yu ; Cao, Yongjian ; Cai, Fengying ; Lv, Yicheng ; Zheng, Yunquan ; Yang, Jianmin ; Shi, Xianai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-3a942453cccba275fe4a95d77cf95afb12e54e8751b10ffdedc0bbb75854a7a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Aspirin</topic><topic>Asymmetric structures</topic><topic>Bilayers</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - pharmacology</topic><topic>Biomimetics</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone Regeneration - drug effects</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>Controlled release</topic><topic>Defects</topic><topic>Deferoxamine</topic><topic>Deferoxamine - chemistry</topic><topic>Deferoxamine - pharmacology</topic><topic>Delayed-Action Preparations - chemistry</topic><topic>Delayed-Action Preparations - pharmacokinetics</topic><topic>Delayed-Action Preparations - pharmacology</topic><topic>Gelatin</topic><topic>Gelatin - chemistry</topic><topic>Healing</topic><topic>Inflammation</topic><topic>Male</topic><topic>Mineralization</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Osteogenesis - drug effects</topic><topic>Periosteum</topic><topic>Periosteum - drug effects</topic><topic>Polyesters - chemistry</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Skull - drug effects</topic><topic>Skull - injuries</topic><topic>Structure-function relationships</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xingkai</creatorcontrib><creatorcontrib>Zhuang, Yu</creatorcontrib><creatorcontrib>Cao, Yongjian</creatorcontrib><creatorcontrib>Cai, Fengying</creatorcontrib><creatorcontrib>Lv, Yicheng</creatorcontrib><creatorcontrib>Zheng, Yunquan</creatorcontrib><creatorcontrib>Yang, Jianmin</creatorcontrib><creatorcontrib>Shi, Xianai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xingkai</au><au>Zhuang, Yu</au><au>Cao, Yongjian</au><au>Cai, Fengying</au><au>Lv, Yicheng</au><au>Zheng, Yunquan</au><au>Yang, Jianmin</au><au>Shi, Xianai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun Biomimetic Periosteum Capable of Controlled Release of Multiple Agents for Programmed Promoting Bone Regeneration</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>12</issue><spage>e2303134</spage><pages>e2303134-</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>The effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healing mechanisms. The biomimetic periosteum is composed of a bilayer with an asymmetric structure in which an aligned electrospun poly(ε-caprolactone)/gelatin/deferoxamine (PCL/GEL/DFO) layer mimics the outer fibrous layer of the periosteum, while a random coaxial electrospun PCL/GEL/aspirin (ASP) shell and PCL/silicon nanoparticles (SiNPs) core layer mimics the inner cambial layer. The bilayer controls the release of ASP, DFO, and SiNPs to precisely regulate the inflammatory, angiogenic, and osteogenic phases of bone repair. The random coaxial inner layer can effectively antioxidize, promoting cell recruitment, proliferation, differentiation, and mineralization, while the aligned outer layer can promote angiogenesis and prevent fibroblast infiltration. In particular, different stages of bone repair are modulated in a rat skull defect model to achieve faster and better bone regeneration. The proposed biomimetic periosteum is expected to be a promising candidate for bone defect healing.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38348511</pmid><doi>10.1002/adhm.202303134</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2024-05, Vol.13 (12), p.e2303134 |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2926079605 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Angiogenesis Animals Aspirin Asymmetric structures Bilayers Biomimetic Materials - chemistry Biomimetic Materials - pharmacology Biomimetics Bone growth Bone healing Bone Regeneration - drug effects Cell differentiation Cell Differentiation - drug effects Controlled release Defects Deferoxamine Deferoxamine - chemistry Deferoxamine - pharmacology Delayed-Action Preparations - chemistry Delayed-Action Preparations - pharmacokinetics Delayed-Action Preparations - pharmacology Gelatin Gelatin - chemistry Healing Inflammation Male Mineralization Nanoparticles Nanoparticles - chemistry Osteogenesis - drug effects Periosteum Periosteum - drug effects Polyesters - chemistry Rats Rats, Sprague-Dawley Regeneration Regeneration (physiology) Skull - drug effects Skull - injuries Structure-function relationships Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Electrospun Biomimetic Periosteum Capable of Controlled Release of Multiple Agents for Programmed Promoting Bone Regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20Biomimetic%20Periosteum%20Capable%20of%20Controlled%20Release%20of%20Multiple%20Agents%20for%20Programmed%20Promoting%20Bone%20Regeneration&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Zhao,%20Xingkai&rft.date=2024-05-01&rft.volume=13&rft.issue=12&rft.spage=e2303134&rft.pages=e2303134-&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202303134&rft_dat=%3Cproquest_cross%3E2926079605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051306185&rft_id=info:pmid/38348511&rfr_iscdi=true |