Machine Learning Prediction of Molecular Binding Profiles on Metal-Porphyrin via Spectroscopic Descriptors

The study of molecular adsorption is crucial for understanding various chemical processes. Spectroscopy offers a convenient and non-invasive way of probing structures of adsorbed states and can be used for real-time observation of molecular binding profiles, including both structural and energetic i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2024-02, Vol.15 (7), p.1956-1961
Hauptverfasser: Ye, Ke, Wang, Song, Huang, Yan, Hu, Min, Zhou, Donglai, Luo, Yi, Ye, Sheng, Zhang, Guozhen, Jiang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1961
container_issue 7
container_start_page 1956
container_title The journal of physical chemistry letters
container_volume 15
creator Ye, Ke
Wang, Song
Huang, Yan
Hu, Min
Zhou, Donglai
Luo, Yi
Ye, Sheng
Zhang, Guozhen
Jiang, Jun
description The study of molecular adsorption is crucial for understanding various chemical processes. Spectroscopy offers a convenient and non-invasive way of probing structures of adsorbed states and can be used for real-time observation of molecular binding profiles, including both structural and energetic information. However, deciphering atomic structures from spectral information using the first-principles approach is computationally expensive and time-consuming because of the sophistication of recording spectra, chemical structures, and their relationship. Here, we demonstrate the feasibility of a data-driven machine learning approach for predicting binding energy and structural information directly from vibrational spectra of the adsorbate by using CO adsorption on iron porphyrin as an example. Our trained machine learning model is not only interpretable but also readily transferred to similar metal–nitrogen–carbon systems with comparable accuracy. This work shows the potential of using structure-encoded spectroscopic descriptors in machine learning models for the study of adsorbed states of molecules on transition metal complexes.
doi_str_mv 10.1021/acs.jpclett.3c03002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2926079187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926079187</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-93b64685289b13140dbe1df48adfb17df08d5cab58d6814ece76345ca957cb483</originalsourceid><addsrcrecordid>eNp9kF1PwyAUhonRuDn9BSaGS2-6QaGFXur8TLa4RL1uKJw6lq5UaE327612Gq-84gSe9xzOg9A5JVNKYjpTOkw3ja6gbadME0ZIfIDGNOMyElQmh3_qEToJYUNImhEpjtGIScbTOBVjtFkqvbY14AUoX9v6Da88GKtb62rsSrx0FeiuUh5f29oM7660FQTcA0toVRWtnG_WO29r_GEVfm5At94F7Rqr8Q0E7W3TOh9O0VGpqgBn-3OCXu9uX-YP0eLp_nF-tYhUnCVtlLEi5alMYpkVlFFOTAHUlFwqUxZUmJJIk2hVJNKkknLQIFLG-5ssEbrgkk3Q5dC38e69g9DmWxs0VJWqwXUhj7M4JSKjUvQoG1Ddfzh4KPPG263yu5yS_Ety3kvO95LzveQ-dbEf0BVbML-ZH6s9MBuA77TrfN3v-2_LT6WRjRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926079187</pqid></control><display><type>article</type><title>Machine Learning Prediction of Molecular Binding Profiles on Metal-Porphyrin via Spectroscopic Descriptors</title><source>ACS Publications</source><creator>Ye, Ke ; Wang, Song ; Huang, Yan ; Hu, Min ; Zhou, Donglai ; Luo, Yi ; Ye, Sheng ; Zhang, Guozhen ; Jiang, Jun</creator><creatorcontrib>Ye, Ke ; Wang, Song ; Huang, Yan ; Hu, Min ; Zhou, Donglai ; Luo, Yi ; Ye, Sheng ; Zhang, Guozhen ; Jiang, Jun</creatorcontrib><description>The study of molecular adsorption is crucial for understanding various chemical processes. Spectroscopy offers a convenient and non-invasive way of probing structures of adsorbed states and can be used for real-time observation of molecular binding profiles, including both structural and energetic information. However, deciphering atomic structures from spectral information using the first-principles approach is computationally expensive and time-consuming because of the sophistication of recording spectra, chemical structures, and their relationship. Here, we demonstrate the feasibility of a data-driven machine learning approach for predicting binding energy and structural information directly from vibrational spectra of the adsorbate by using CO adsorption on iron porphyrin as an example. Our trained machine learning model is not only interpretable but also readily transferred to similar metal–nitrogen–carbon systems with comparable accuracy. This work shows the potential of using structure-encoded spectroscopic descriptors in machine learning models for the study of adsorbed states of molecules on transition metal complexes.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c03002</identifier><identifier>PMID: 38346267</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2024-02, Vol.15 (7), p.1956-1961</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a295t-93b64685289b13140dbe1df48adfb17df08d5cab58d6814ece76345ca957cb483</cites><orcidid>0009-0008-2586-3124 ; 0000-0002-6116-5605 ; 0000-0003-1252-8091 ; 0000-0003-0125-9666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c03002$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c03002$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38346267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Ke</creatorcontrib><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Hu, Min</creatorcontrib><creatorcontrib>Zhou, Donglai</creatorcontrib><creatorcontrib>Luo, Yi</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Zhang, Guozhen</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><title>Machine Learning Prediction of Molecular Binding Profiles on Metal-Porphyrin via Spectroscopic Descriptors</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The study of molecular adsorption is crucial for understanding various chemical processes. Spectroscopy offers a convenient and non-invasive way of probing structures of adsorbed states and can be used for real-time observation of molecular binding profiles, including both structural and energetic information. However, deciphering atomic structures from spectral information using the first-principles approach is computationally expensive and time-consuming because of the sophistication of recording spectra, chemical structures, and their relationship. Here, we demonstrate the feasibility of a data-driven machine learning approach for predicting binding energy and structural information directly from vibrational spectra of the adsorbate by using CO adsorption on iron porphyrin as an example. Our trained machine learning model is not only interpretable but also readily transferred to similar metal–nitrogen–carbon systems with comparable accuracy. This work shows the potential of using structure-encoded spectroscopic descriptors in machine learning models for the study of adsorbed states of molecules on transition metal complexes.</description><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kF1PwyAUhonRuDn9BSaGS2-6QaGFXur8TLa4RL1uKJw6lq5UaE327612Gq-84gSe9xzOg9A5JVNKYjpTOkw3ja6gbadME0ZIfIDGNOMyElQmh3_qEToJYUNImhEpjtGIScbTOBVjtFkqvbY14AUoX9v6Da88GKtb62rsSrx0FeiuUh5f29oM7660FQTcA0toVRWtnG_WO29r_GEVfm5At94F7Rqr8Q0E7W3TOh9O0VGpqgBn-3OCXu9uX-YP0eLp_nF-tYhUnCVtlLEi5alMYpkVlFFOTAHUlFwqUxZUmJJIk2hVJNKkknLQIFLG-5ssEbrgkk3Q5dC38e69g9DmWxs0VJWqwXUhj7M4JSKjUvQoG1Ddfzh4KPPG263yu5yS_Ety3kvO95LzveQ-dbEf0BVbML-ZH6s9MBuA77TrfN3v-2_LT6WRjRY</recordid><startdate>20240222</startdate><enddate>20240222</enddate><creator>Ye, Ke</creator><creator>Wang, Song</creator><creator>Huang, Yan</creator><creator>Hu, Min</creator><creator>Zhou, Donglai</creator><creator>Luo, Yi</creator><creator>Ye, Sheng</creator><creator>Zhang, Guozhen</creator><creator>Jiang, Jun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-2586-3124</orcidid><orcidid>https://orcid.org/0000-0002-6116-5605</orcidid><orcidid>https://orcid.org/0000-0003-1252-8091</orcidid><orcidid>https://orcid.org/0000-0003-0125-9666</orcidid></search><sort><creationdate>20240222</creationdate><title>Machine Learning Prediction of Molecular Binding Profiles on Metal-Porphyrin via Spectroscopic Descriptors</title><author>Ye, Ke ; Wang, Song ; Huang, Yan ; Hu, Min ; Zhou, Donglai ; Luo, Yi ; Ye, Sheng ; Zhang, Guozhen ; Jiang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-93b64685289b13140dbe1df48adfb17df08d5cab58d6814ece76345ca957cb483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Ke</creatorcontrib><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Hu, Min</creatorcontrib><creatorcontrib>Zhou, Donglai</creatorcontrib><creatorcontrib>Luo, Yi</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Zhang, Guozhen</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Ke</au><au>Wang, Song</au><au>Huang, Yan</au><au>Hu, Min</au><au>Zhou, Donglai</au><au>Luo, Yi</au><au>Ye, Sheng</au><au>Zhang, Guozhen</au><au>Jiang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Prediction of Molecular Binding Profiles on Metal-Porphyrin via Spectroscopic Descriptors</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-02-22</date><risdate>2024</risdate><volume>15</volume><issue>7</issue><spage>1956</spage><epage>1961</epage><pages>1956-1961</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The study of molecular adsorption is crucial for understanding various chemical processes. Spectroscopy offers a convenient and non-invasive way of probing structures of adsorbed states and can be used for real-time observation of molecular binding profiles, including both structural and energetic information. However, deciphering atomic structures from spectral information using the first-principles approach is computationally expensive and time-consuming because of the sophistication of recording spectra, chemical structures, and their relationship. Here, we demonstrate the feasibility of a data-driven machine learning approach for predicting binding energy and structural information directly from vibrational spectra of the adsorbate by using CO adsorption on iron porphyrin as an example. Our trained machine learning model is not only interpretable but also readily transferred to similar metal–nitrogen–carbon systems with comparable accuracy. This work shows the potential of using structure-encoded spectroscopic descriptors in machine learning models for the study of adsorbed states of molecules on transition metal complexes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38346267</pmid><doi>10.1021/acs.jpclett.3c03002</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0008-2586-3124</orcidid><orcidid>https://orcid.org/0000-0002-6116-5605</orcidid><orcidid>https://orcid.org/0000-0003-1252-8091</orcidid><orcidid>https://orcid.org/0000-0003-0125-9666</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2024-02, Vol.15 (7), p.1956-1961
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2926079187
source ACS Publications
subjects Physical Insights into Chemistry, Catalysis, and Interfaces
title Machine Learning Prediction of Molecular Binding Profiles on Metal-Porphyrin via Spectroscopic Descriptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Prediction%20of%20Molecular%20Binding%20Profiles%20on%20Metal-Porphyrin%20via%20Spectroscopic%20Descriptors&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Ye,%20Ke&rft.date=2024-02-22&rft.volume=15&rft.issue=7&rft.spage=1956&rft.epage=1961&rft.pages=1956-1961&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c03002&rft_dat=%3Cproquest_cross%3E2926079187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926079187&rft_id=info:pmid/38346267&rfr_iscdi=true