Effects of River Discharge, Wind Stress, and Slope Eddies on Circulation and the Satellite-Observed Structure of the Mississippi River Plume

Satellite measurements of suspended sediment, temperature, and chlorophyll α are used in combination with surface current measurements to investigate surface circulation and structure of the Mississippi River plume. River discharge changes affect frontal locations, areal extent, and suspended sedime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of coastal research 2005-11, Vol.21 (6), p.1228-1244
Hauptverfasser: Walker, Nan D, Wiseman, William J, Rouse, Lawrence J, Babin, Adele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Satellite measurements of suspended sediment, temperature, and chlorophyll α are used in combination with surface current measurements to investigate surface circulation and structure of the Mississippi River plume. River discharge changes affect frontal locations, areal extent, and suspended sediment loads of the plume. During high river discharge (>20,000 m3 s−1) in spring, the sediment plume extends 23 km southwestward, covers 2700 km2, with maximum concentrations of 360 mg L−1. Plume temperatures vary seasonally from 10° to 28°C, with maximum surface fronts of 3.3°C km−1 in winter. East winds, prevalent in autumn, winter, and spring, drive a westward flow of river waters around the delta, linking two isolated shelf regions and increasing river discharge onto the Louisiana/Texas shelf. During peak river flow, this westward current exhibits velocities of 40–90 cm s−1, is 20 km wide, and transports 140,000–165,000 m3 s−1 of river and shelf water. It usually turns toward the coast between 89.5° W and 90° W, feeding a clockwise gyre in the Louisiana Bight and a westward coastal current. The prevalent east winds trap river water and associated nutrients on the shelf where hypoxia later develops in late spring/summer. During autumn and winter, short-term wind reversals from frontal passages rapidly reverse plume direction, initiate off-shelf transport, and reduce residence times for river waters and associated sediments, nutrients, phytoplankton, and carbon. During summer, persistent southwest and south winds force river water eastward, where cross-margin transport is likely due to the relatively narrow shelf. Slope eddies and the Loop Current control river water after leaving the shelf.
ISSN:0749-0208
1551-5036
DOI:10.2112/04-0347.1