Ultra-high-cycle fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel at elevated temperatures

This paper shows the fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel. In refineries or chemical plants, modified 2.25Cr-lMo steel is used in hot and high-pressure environments. Recently, a new fatigue problem concerning these facilities has become important, because number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2006-11, Vol.28 (11), p.1633-1639
Hauptverfasser: Kobayashi, Hideo, Todoroki, Akira, Oomura, Toshikazu, Sano, Takeru, Takehana, Tatsumi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1639
container_issue 11
container_start_page 1633
container_title International journal of fatigue
container_volume 28
creator Kobayashi, Hideo
Todoroki, Akira
Oomura, Toshikazu
Sano, Takeru
Takehana, Tatsumi
description This paper shows the fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel. In refineries or chemical plants, modified 2.25Cr-lMo steel is used in hot and high-pressure environments. Recently, a new fatigue problem concerning these facilities has become important, because number of cycles to failure that should be taken into consideration for maintenance has increased to over 10(7) cycles. For ultra-high-cycle fatigue, interior inclusions in the material are the dominant factor in a fatigue life, but the fracture mechanism for this has not been clearly elucidated. The results of ultra-high-cycle fatigue properties at elevated temperatures are presented. Interior fracture takes place at an ultra-high-cycle region, although many cases show no inclusions in the origins of an interior fracture. Crack growth life is predicted using fracture mechanics, so that life prediction for modified 2.25Cr-lMo steel is possible.
doi_str_mv 10.1016/j.ijfatigue.2005.08.016
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29255719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29255719</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_292557193</originalsourceid><addsrcrecordid>eNqNjb1OxDAQhF2AxPHzDGxFZ2P7MEfqE4iGjqtPK2d9cWTHwesg8fYE6R6AaqSZ-WaEuDdaGW2eH0cVx4AtnhZSVmun9Ita_Qux0ebJSmPs9kpcM49a607v3EbMh9QqyiGeBul_fCI48zDXMlNtkRhw6iFU9G2pBJn8gFPkDCVALn0MkXqwyrp9lemjADeiBNiAEn1jW8NGeZ3CP5xvxWXAxHR31hvx8Pb6uX-X69_XQtyOObKnlHCisvDRdta5nem2_y7-AlhUVYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29255719</pqid></control><display><type>article</type><title>Ultra-high-cycle fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel at elevated temperatures</title><source>Elsevier ScienceDirect Journals</source><creator>Kobayashi, Hideo ; Todoroki, Akira ; Oomura, Toshikazu ; Sano, Takeru ; Takehana, Tatsumi</creator><creatorcontrib>Kobayashi, Hideo ; Todoroki, Akira ; Oomura, Toshikazu ; Sano, Takeru ; Takehana, Tatsumi</creatorcontrib><description>This paper shows the fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel. In refineries or chemical plants, modified 2.25Cr-lMo steel is used in hot and high-pressure environments. Recently, a new fatigue problem concerning these facilities has become important, because number of cycles to failure that should be taken into consideration for maintenance has increased to over 10(7) cycles. For ultra-high-cycle fatigue, interior inclusions in the material are the dominant factor in a fatigue life, but the fracture mechanism for this has not been clearly elucidated. The results of ultra-high-cycle fatigue properties at elevated temperatures are presented. Interior fracture takes place at an ultra-high-cycle region, although many cases show no inclusions in the origins of an interior fracture. Crack growth life is predicted using fracture mechanics, so that life prediction for modified 2.25Cr-lMo steel is possible.</description><identifier>ISSN: 0142-1123</identifier><identifier>DOI: 10.1016/j.ijfatigue.2005.08.016</identifier><language>eng</language><ispartof>International journal of fatigue, 2006-11, Vol.28 (11), p.1633-1639</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kobayashi, Hideo</creatorcontrib><creatorcontrib>Todoroki, Akira</creatorcontrib><creatorcontrib>Oomura, Toshikazu</creatorcontrib><creatorcontrib>Sano, Takeru</creatorcontrib><creatorcontrib>Takehana, Tatsumi</creatorcontrib><title>Ultra-high-cycle fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel at elevated temperatures</title><title>International journal of fatigue</title><description>This paper shows the fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel. In refineries or chemical plants, modified 2.25Cr-lMo steel is used in hot and high-pressure environments. Recently, a new fatigue problem concerning these facilities has become important, because number of cycles to failure that should be taken into consideration for maintenance has increased to over 10(7) cycles. For ultra-high-cycle fatigue, interior inclusions in the material are the dominant factor in a fatigue life, but the fracture mechanism for this has not been clearly elucidated. The results of ultra-high-cycle fatigue properties at elevated temperatures are presented. Interior fracture takes place at an ultra-high-cycle region, although many cases show no inclusions in the origins of an interior fracture. Crack growth life is predicted using fracture mechanics, so that life prediction for modified 2.25Cr-lMo steel is possible.</description><issn>0142-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNjb1OxDAQhF2AxPHzDGxFZ2P7MEfqE4iGjqtPK2d9cWTHwesg8fYE6R6AaqSZ-WaEuDdaGW2eH0cVx4AtnhZSVmun9Ita_Qux0ebJSmPs9kpcM49a607v3EbMh9QqyiGeBul_fCI48zDXMlNtkRhw6iFU9G2pBJn8gFPkDCVALn0MkXqwyrp9lemjADeiBNiAEn1jW8NGeZ3CP5xvxWXAxHR31hvx8Pb6uX-X69_XQtyOObKnlHCisvDRdta5nem2_y7-AlhUVYM</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Kobayashi, Hideo</creator><creator>Todoroki, Akira</creator><creator>Oomura, Toshikazu</creator><creator>Sano, Takeru</creator><creator>Takehana, Tatsumi</creator><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20061101</creationdate><title>Ultra-high-cycle fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel at elevated temperatures</title><author>Kobayashi, Hideo ; Todoroki, Akira ; Oomura, Toshikazu ; Sano, Takeru ; Takehana, Tatsumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_292557193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Hideo</creatorcontrib><creatorcontrib>Todoroki, Akira</creatorcontrib><creatorcontrib>Oomura, Toshikazu</creatorcontrib><creatorcontrib>Sano, Takeru</creatorcontrib><creatorcontrib>Takehana, Tatsumi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Hideo</au><au>Todoroki, Akira</au><au>Oomura, Toshikazu</au><au>Sano, Takeru</au><au>Takehana, Tatsumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-high-cycle fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel at elevated temperatures</atitle><jtitle>International journal of fatigue</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>28</volume><issue>11</issue><spage>1633</spage><epage>1639</epage><pages>1633-1639</pages><issn>0142-1123</issn><abstract>This paper shows the fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel. In refineries or chemical plants, modified 2.25Cr-lMo steel is used in hot and high-pressure environments. Recently, a new fatigue problem concerning these facilities has become important, because number of cycles to failure that should be taken into consideration for maintenance has increased to over 10(7) cycles. For ultra-high-cycle fatigue, interior inclusions in the material are the dominant factor in a fatigue life, but the fracture mechanism for this has not been clearly elucidated. The results of ultra-high-cycle fatigue properties at elevated temperatures are presented. Interior fracture takes place at an ultra-high-cycle region, although many cases show no inclusions in the origins of an interior fracture. Crack growth life is predicted using fracture mechanics, so that life prediction for modified 2.25Cr-lMo steel is possible.</abstract><doi>10.1016/j.ijfatigue.2005.08.016</doi></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2006-11, Vol.28 (11), p.1633-1639
issn 0142-1123
language eng
recordid cdi_proquest_miscellaneous_29255719
source Elsevier ScienceDirect Journals
title Ultra-high-cycle fatigue properties and fracture mechanism of modified 2.25Cr-lMo steel at elevated temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-high-cycle%20fatigue%20properties%20and%20fracture%20mechanism%20of%20modified%202.25Cr-lMo%20steel%20at%20elevated%20temperatures&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Kobayashi,%20Hideo&rft.date=2006-11-01&rft.volume=28&rft.issue=11&rft.spage=1633&rft.epage=1639&rft.pages=1633-1639&rft.issn=0142-1123&rft_id=info:doi/10.1016/j.ijfatigue.2005.08.016&rft_dat=%3Cproquest%3E29255719%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29255719&rft_id=info:pmid/&rfr_iscdi=true