GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning

Fragment-based drug discovery (FBDD) is widely used in drug design. One useful strategy in FBDD is designing linkers for linking fragments to optimize their molecular properties. In the current study, we present a novel generative fragment linking model, GRELinker, which utilizes a gated-graph neura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-02, Vol.64 (3), p.666-676
Hauptverfasser: Zhang, Hao, Huang, Jinchao, Xie, Junjie, Huang, Weifeng, Yang, Yuedong, Xu, Mingyuan, Lei, Jinping, Chen, Hongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 676
container_issue 3
container_start_page 666
container_title Journal of chemical information and modeling
container_volume 64
creator Zhang, Hao
Huang, Jinchao
Xie, Junjie
Huang, Weifeng
Yang, Yuedong
Xu, Mingyuan
Lei, Jinping
Chen, Hongming
description Fragment-based drug discovery (FBDD) is widely used in drug design. One useful strategy in FBDD is designing linkers for linking fragments to optimize their molecular properties. In the current study, we present a novel generative fragment linking model, GRELinker, which utilizes a gated-graph neural network combined with reinforcement and curriculum learning to generate molecules with desirable attributes. The model has been shown to be efficient in multiple tasks, including controlling log P, optimizing synthesizability or predicted bioactivity of compounds, and generating molecules with high 3D similarity but low 2D similarity to the lead compound. Specifically, our model outperforms the previously reported reinforcement learning (RL) built-in method DRlinker on these benchmark tasks. Moreover, GRELinker has been successfully used in an actual FBDD case to generate optimized molecules with enhanced affinities by employing the docking score as the scoring function in RL. Besides, the implementation of curriculum learning in our framework enables the generation of structurally complex linkers more efficiently. These results demonstrate the benefits and feasibility of GRELinker in linker design for molecular optimization and drug discovery.
doi_str_mv 10.1021/acs.jcim.3c01700
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925486334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925486334</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-f4e725164df2f9561c8527a14d9dafc10bbcf5f86cc7ddd05f71a9c15e02c933</originalsourceid><addsrcrecordid>eNp1kc1PGzEQxa2qqAm0d07IUi8c2OCP9e6aGw2QIgVVQhx6Wzn2OHHY9ab2Loj_HockPVTqad7h996M5iF0SsmEEkYvlY6TtXbthGtCS0I-oTEVucxkQX5_PmghixE6jnFNCOeyYF_QiFcsTwFsjDazx9u5888QrvA1ngW1WWU_VASDZ-AhqN69AH7oDDTYdiGpBvTQqIB3JnwD0S09fnX9Cj-C8wnS0ILvsfIGT4cQXOKHFs9BBe_88is6sqqJ8G0_T9DT3e3T9Gc2_zW7n17PM8Vp2Wc2h5IJWuTGMitFQXUlWKlobqRRVlOyWGgrbFVoXRpjiLAlVVJTAYRpyfkJOt_FbkL3Z4DY162LGppGeeiGWDPJRF4VnOcJ_f4Puu6G4NNxW6qgVSkYTRTZUTp0MQaw9Sa4VoW3mpJ6W0adyqi3ZdT7MpLlbB88LFowfw2H7yfgYgd8WA9L_5v3DuQhlbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926187521</pqid></control><display><type>article</type><title>GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning</title><source>ACS Publications</source><source>MEDLINE</source><creator>Zhang, Hao ; Huang, Jinchao ; Xie, Junjie ; Huang, Weifeng ; Yang, Yuedong ; Xu, Mingyuan ; Lei, Jinping ; Chen, Hongming</creator><creatorcontrib>Zhang, Hao ; Huang, Jinchao ; Xie, Junjie ; Huang, Weifeng ; Yang, Yuedong ; Xu, Mingyuan ; Lei, Jinping ; Chen, Hongming</creatorcontrib><description>Fragment-based drug discovery (FBDD) is widely used in drug design. One useful strategy in FBDD is designing linkers for linking fragments to optimize their molecular properties. In the current study, we present a novel generative fragment linking model, GRELinker, which utilizes a gated-graph neural network combined with reinforcement and curriculum learning to generate molecules with desirable attributes. The model has been shown to be efficient in multiple tasks, including controlling log P, optimizing synthesizability or predicted bioactivity of compounds, and generating molecules with high 3D similarity but low 2D similarity to the lead compound. Specifically, our model outperforms the previously reported reinforcement learning (RL) built-in method DRlinker on these benchmark tasks. Moreover, GRELinker has been successfully used in an actual FBDD case to generate optimized molecules with enhanced affinities by employing the docking score as the scoring function in RL. Besides, the implementation of curriculum learning in our framework enables the generation of structurally complex linkers more efficiently. These results demonstrate the benefits and feasibility of GRELinker in linker design for molecular optimization and drug discovery.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c01700</identifier><identifier>PMID: 38241022</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Curricula ; Curriculum ; Design optimization ; Drug Design ; Drug Discovery ; Graph neural networks ; Lead compounds ; Learning ; Machine Learning and Deep Learning ; Molecular properties ; Neural Networks, Computer ; Similarity</subject><ispartof>Journal of chemical information and modeling, 2024-02, Vol.64 (3), p.666-676</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 12, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a317t-f4e725164df2f9561c8527a14d9dafc10bbcf5f86cc7ddd05f71a9c15e02c933</cites><orcidid>0009-0008-9927-0452 ; 0000-0003-0463-4249 ; 0000-0002-6782-2813 ; 0000-0002-6888-2973 ; 0009-0009-5870-9032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.3c01700$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.3c01700$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38241022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Huang, Jinchao</creatorcontrib><creatorcontrib>Xie, Junjie</creatorcontrib><creatorcontrib>Huang, Weifeng</creatorcontrib><creatorcontrib>Yang, Yuedong</creatorcontrib><creatorcontrib>Xu, Mingyuan</creatorcontrib><creatorcontrib>Lei, Jinping</creatorcontrib><creatorcontrib>Chen, Hongming</creatorcontrib><title>GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Fragment-based drug discovery (FBDD) is widely used in drug design. One useful strategy in FBDD is designing linkers for linking fragments to optimize their molecular properties. In the current study, we present a novel generative fragment linking model, GRELinker, which utilizes a gated-graph neural network combined with reinforcement and curriculum learning to generate molecules with desirable attributes. The model has been shown to be efficient in multiple tasks, including controlling log P, optimizing synthesizability or predicted bioactivity of compounds, and generating molecules with high 3D similarity but low 2D similarity to the lead compound. Specifically, our model outperforms the previously reported reinforcement learning (RL) built-in method DRlinker on these benchmark tasks. Moreover, GRELinker has been successfully used in an actual FBDD case to generate optimized molecules with enhanced affinities by employing the docking score as the scoring function in RL. Besides, the implementation of curriculum learning in our framework enables the generation of structurally complex linkers more efficiently. These results demonstrate the benefits and feasibility of GRELinker in linker design for molecular optimization and drug discovery.</description><subject>Curricula</subject><subject>Curriculum</subject><subject>Design optimization</subject><subject>Drug Design</subject><subject>Drug Discovery</subject><subject>Graph neural networks</subject><subject>Lead compounds</subject><subject>Learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Molecular properties</subject><subject>Neural Networks, Computer</subject><subject>Similarity</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1PGzEQxa2qqAm0d07IUi8c2OCP9e6aGw2QIgVVQhx6Wzn2OHHY9ab2Loj_HockPVTqad7h996M5iF0SsmEEkYvlY6TtXbthGtCS0I-oTEVucxkQX5_PmghixE6jnFNCOeyYF_QiFcsTwFsjDazx9u5888QrvA1ngW1WWU_VASDZ-AhqN69AH7oDDTYdiGpBvTQqIB3JnwD0S09fnX9Cj-C8wnS0ILvsfIGT4cQXOKHFs9BBe_88is6sqqJ8G0_T9DT3e3T9Gc2_zW7n17PM8Vp2Wc2h5IJWuTGMitFQXUlWKlobqRRVlOyWGgrbFVoXRpjiLAlVVJTAYRpyfkJOt_FbkL3Z4DY162LGppGeeiGWDPJRF4VnOcJ_f4Puu6G4NNxW6qgVSkYTRTZUTp0MQaw9Sa4VoW3mpJ6W0adyqi3ZdT7MpLlbB88LFowfw2H7yfgYgd8WA9L_5v3DuQhlbg</recordid><startdate>20240212</startdate><enddate>20240212</enddate><creator>Zhang, Hao</creator><creator>Huang, Jinchao</creator><creator>Xie, Junjie</creator><creator>Huang, Weifeng</creator><creator>Yang, Yuedong</creator><creator>Xu, Mingyuan</creator><creator>Lei, Jinping</creator><creator>Chen, Hongming</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-9927-0452</orcidid><orcidid>https://orcid.org/0000-0003-0463-4249</orcidid><orcidid>https://orcid.org/0000-0002-6782-2813</orcidid><orcidid>https://orcid.org/0000-0002-6888-2973</orcidid><orcidid>https://orcid.org/0009-0009-5870-9032</orcidid></search><sort><creationdate>20240212</creationdate><title>GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning</title><author>Zhang, Hao ; Huang, Jinchao ; Xie, Junjie ; Huang, Weifeng ; Yang, Yuedong ; Xu, Mingyuan ; Lei, Jinping ; Chen, Hongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-f4e725164df2f9561c8527a14d9dafc10bbcf5f86cc7ddd05f71a9c15e02c933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Curricula</topic><topic>Curriculum</topic><topic>Design optimization</topic><topic>Drug Design</topic><topic>Drug Discovery</topic><topic>Graph neural networks</topic><topic>Lead compounds</topic><topic>Learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Molecular properties</topic><topic>Neural Networks, Computer</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Huang, Jinchao</creatorcontrib><creatorcontrib>Xie, Junjie</creatorcontrib><creatorcontrib>Huang, Weifeng</creatorcontrib><creatorcontrib>Yang, Yuedong</creatorcontrib><creatorcontrib>Xu, Mingyuan</creatorcontrib><creatorcontrib>Lei, Jinping</creatorcontrib><creatorcontrib>Chen, Hongming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hao</au><au>Huang, Jinchao</au><au>Xie, Junjie</au><au>Huang, Weifeng</au><au>Yang, Yuedong</au><au>Xu, Mingyuan</au><au>Lei, Jinping</au><au>Chen, Hongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-02-12</date><risdate>2024</risdate><volume>64</volume><issue>3</issue><spage>666</spage><epage>676</epage><pages>666-676</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>Fragment-based drug discovery (FBDD) is widely used in drug design. One useful strategy in FBDD is designing linkers for linking fragments to optimize their molecular properties. In the current study, we present a novel generative fragment linking model, GRELinker, which utilizes a gated-graph neural network combined with reinforcement and curriculum learning to generate molecules with desirable attributes. The model has been shown to be efficient in multiple tasks, including controlling log P, optimizing synthesizability or predicted bioactivity of compounds, and generating molecules with high 3D similarity but low 2D similarity to the lead compound. Specifically, our model outperforms the previously reported reinforcement learning (RL) built-in method DRlinker on these benchmark tasks. Moreover, GRELinker has been successfully used in an actual FBDD case to generate optimized molecules with enhanced affinities by employing the docking score as the scoring function in RL. Besides, the implementation of curriculum learning in our framework enables the generation of structurally complex linkers more efficiently. These results demonstrate the benefits and feasibility of GRELinker in linker design for molecular optimization and drug discovery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38241022</pmid><doi>10.1021/acs.jcim.3c01700</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0008-9927-0452</orcidid><orcidid>https://orcid.org/0000-0003-0463-4249</orcidid><orcidid>https://orcid.org/0000-0002-6782-2813</orcidid><orcidid>https://orcid.org/0000-0002-6888-2973</orcidid><orcidid>https://orcid.org/0009-0009-5870-9032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2024-02, Vol.64 (3), p.666-676
issn 1549-9596
1549-960X
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2925486334
source ACS Publications; MEDLINE
subjects Curricula
Curriculum
Design optimization
Drug Design
Drug Discovery
Graph neural networks
Lead compounds
Learning
Machine Learning and Deep Learning
Molecular properties
Neural Networks, Computer
Similarity
title GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRELinker:%20A%20Graph-Based%20Generative%20Model%20for%20Molecular%20Linker%20Design%20with%20Reinforcement%20and%20Curriculum%20Learning&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Zhang,%20Hao&rft.date=2024-02-12&rft.volume=64&rft.issue=3&rft.spage=666&rft.epage=676&rft.pages=666-676&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c01700&rft_dat=%3Cproquest_cross%3E2925486334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926187521&rft_id=info:pmid/38241022&rfr_iscdi=true