Self-Assembly of the Chiral Donor–Acceptor Molecule DCzDCN on Cu(100)

Donor–acceptor (D–A) structured molecules are essential components of organic electronics. The respective molecular structures of these molecules and their synthesis are primarily determined by the intended area of application. Typically, D–A molecules promote charge separation and transport in orga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-02, Vol.16 (7), p.9108-9116
Hauptverfasser: Ranecki, Robert, Baumann, Benedikt, Lach, Stefan, Ziegler, Christiane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9116
container_issue 7
container_start_page 9108
container_title ACS applied materials & interfaces
container_volume 16
creator Ranecki, Robert
Baumann, Benedikt
Lach, Stefan
Ziegler, Christiane
description Donor–acceptor (D–A) structured molecules are essential components of organic electronics. The respective molecular structures of these molecules and their synthesis are primarily determined by the intended area of application. Typically, D–A molecules promote charge separation and transport in organic photovoltaics or organic field-effect transistors. D–A molecules showing a larger twist angle between D and A units are, e.g., essential for the development of high internal quantum efficiency in organic light-emitting diodes. A prototypical molecule of this D–A type is DCzDCN (5-(4,6-diphenyl-1,3,5-triazine-2-yl)­benzene-1,3-dinitrile). In most cases, these molecules are only investigated regarding their electronic and structural interaction in bulk aggregates but not in ultrathin films supported by a metallic substrate. Here, we present growth and electronic structure studies of DCzDCN on a Cu(100) surface. We used a complementary approach through the use of scanning tunneling microscopy/spectroscopy (STM and STS), ultraviolet/inverse photoemission spectroscopy (UPS and IPES), and single-molecule density functional theory (DFT) calculations. This method combination enabled us to investigate the adsorption geometry (STM) and the local electronic states near the Fermi energy (E F) of a single adsorbed molecule (using STS) and to compare these data with the integral overall electronic structure of the DCzDCN/Cu(100) interface (using UPS/IPES). The orientation of the molecules with the donor part toward the substrate results in a chiral resolution at the interface due to the molecular as well as the substrate symmetry and additional strong molecular electrostatic forces induced by the charge distribution of the twisted dicarbonitrile part. Thus, the formation of various bulk-unlike homochiral structures and the appearance of hybrid interface states modify the molecular electronic properties of the DCzDCN/Cu(100) system, e.g., the transport gap by −1.3 eV compared to that of a single DCzDCN molecule. This may be useful not only for optoelectronic applications but also in organic spintronics.
doi_str_mv 10.1021/acsami.3c16918
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925485824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925485824</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-7392bf5e989ce49b216bc1ee1e38d549f2e2de7cd7484d76f6169e6b12f50bfd3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EoqWwMiKPBSnFf0mcsUqhIBUYgNlKnGs1VRIXOxnKxDvwhjwJQSlsTPcO3znS-RA6p2RGCaPXmfZZXc64plFC5QEa00SIQLKQHf79QozQifcbQiLOSHiMRlxyQSWJxmj5DJUJ5t5DnVc7bA1u14DTdemyCi9sY93Xx-dca9i21uEHW4HuKsCL9H2RPmLb4LSbUkIuT9GRySoPZ_s7Qa-3Ny_pXbB6Wt6n81WQcU7aIOYJy00IiUw0iCRnNMo1BaDAZRGKxDBgBcS6iIUURRyZqN8FUU6ZCUluCj5B06F36-xbB75Vdek1VFXWgO28YgkLhQz70T06G1DtrPcOjNq6ss7cTlGifuSpQZ7ay-sDF_vuLq-h-MN_bfXA1QD0QbWxnWv6qf-1fQM4L3hI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925485824</pqid></control><display><type>article</type><title>Self-Assembly of the Chiral Donor–Acceptor Molecule DCzDCN on Cu(100)</title><source>American Chemical Society Journals</source><creator>Ranecki, Robert ; Baumann, Benedikt ; Lach, Stefan ; Ziegler, Christiane</creator><creatorcontrib>Ranecki, Robert ; Baumann, Benedikt ; Lach, Stefan ; Ziegler, Christiane</creatorcontrib><description>Donor–acceptor (D–A) structured molecules are essential components of organic electronics. The respective molecular structures of these molecules and their synthesis are primarily determined by the intended area of application. Typically, D–A molecules promote charge separation and transport in organic photovoltaics or organic field-effect transistors. D–A molecules showing a larger twist angle between D and A units are, e.g., essential for the development of high internal quantum efficiency in organic light-emitting diodes. A prototypical molecule of this D–A type is DCzDCN (5-(4,6-diphenyl-1,3,5-triazine-2-yl)­benzene-1,3-dinitrile). In most cases, these molecules are only investigated regarding their electronic and structural interaction in bulk aggregates but not in ultrathin films supported by a metallic substrate. Here, we present growth and electronic structure studies of DCzDCN on a Cu(100) surface. We used a complementary approach through the use of scanning tunneling microscopy/spectroscopy (STM and STS), ultraviolet/inverse photoemission spectroscopy (UPS and IPES), and single-molecule density functional theory (DFT) calculations. This method combination enabled us to investigate the adsorption geometry (STM) and the local electronic states near the Fermi energy (E F) of a single adsorbed molecule (using STS) and to compare these data with the integral overall electronic structure of the DCzDCN/Cu(100) interface (using UPS/IPES). The orientation of the molecules with the donor part toward the substrate results in a chiral resolution at the interface due to the molecular as well as the substrate symmetry and additional strong molecular electrostatic forces induced by the charge distribution of the twisted dicarbonitrile part. Thus, the formation of various bulk-unlike homochiral structures and the appearance of hybrid interface states modify the molecular electronic properties of the DCzDCN/Cu(100) system, e.g., the transport gap by −1.3 eV compared to that of a single DCzDCN molecule. This may be useful not only for optoelectronic applications but also in organic spintronics.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c16918</identifier><identifier>PMID: 38341806</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Organic Electronic Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2024-02, Vol.16 (7), p.9108-9116</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-7392bf5e989ce49b216bc1ee1e38d549f2e2de7cd7484d76f6169e6b12f50bfd3</citedby><cites>FETCH-LOGICAL-a330t-7392bf5e989ce49b216bc1ee1e38d549f2e2de7cd7484d76f6169e6b12f50bfd3</cites><orcidid>0000-0001-9087-7233 ; 0000-0002-1068-9644 ; 0000-0002-7963-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c16918$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c16918$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38341806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranecki, Robert</creatorcontrib><creatorcontrib>Baumann, Benedikt</creatorcontrib><creatorcontrib>Lach, Stefan</creatorcontrib><creatorcontrib>Ziegler, Christiane</creatorcontrib><title>Self-Assembly of the Chiral Donor–Acceptor Molecule DCzDCN on Cu(100)</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Donor–acceptor (D–A) structured molecules are essential components of organic electronics. The respective molecular structures of these molecules and their synthesis are primarily determined by the intended area of application. Typically, D–A molecules promote charge separation and transport in organic photovoltaics or organic field-effect transistors. D–A molecules showing a larger twist angle between D and A units are, e.g., essential for the development of high internal quantum efficiency in organic light-emitting diodes. A prototypical molecule of this D–A type is DCzDCN (5-(4,6-diphenyl-1,3,5-triazine-2-yl)­benzene-1,3-dinitrile). In most cases, these molecules are only investigated regarding their electronic and structural interaction in bulk aggregates but not in ultrathin films supported by a metallic substrate. Here, we present growth and electronic structure studies of DCzDCN on a Cu(100) surface. We used a complementary approach through the use of scanning tunneling microscopy/spectroscopy (STM and STS), ultraviolet/inverse photoemission spectroscopy (UPS and IPES), and single-molecule density functional theory (DFT) calculations. This method combination enabled us to investigate the adsorption geometry (STM) and the local electronic states near the Fermi energy (E F) of a single adsorbed molecule (using STS) and to compare these data with the integral overall electronic structure of the DCzDCN/Cu(100) interface (using UPS/IPES). The orientation of the molecules with the donor part toward the substrate results in a chiral resolution at the interface due to the molecular as well as the substrate symmetry and additional strong molecular electrostatic forces induced by the charge distribution of the twisted dicarbonitrile part. Thus, the formation of various bulk-unlike homochiral structures and the appearance of hybrid interface states modify the molecular electronic properties of the DCzDCN/Cu(100) system, e.g., the transport gap by −1.3 eV compared to that of a single DCzDCN molecule. This may be useful not only for optoelectronic applications but also in organic spintronics.</description><subject>Organic Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EoqWwMiKPBSnFf0mcsUqhIBUYgNlKnGs1VRIXOxnKxDvwhjwJQSlsTPcO3znS-RA6p2RGCaPXmfZZXc64plFC5QEa00SIQLKQHf79QozQifcbQiLOSHiMRlxyQSWJxmj5DJUJ5t5DnVc7bA1u14DTdemyCi9sY93Xx-dca9i21uEHW4HuKsCL9H2RPmLb4LSbUkIuT9GRySoPZ_s7Qa-3Ny_pXbB6Wt6n81WQcU7aIOYJy00IiUw0iCRnNMo1BaDAZRGKxDBgBcS6iIUURRyZqN8FUU6ZCUluCj5B06F36-xbB75Vdek1VFXWgO28YgkLhQz70T06G1DtrPcOjNq6ss7cTlGifuSpQZ7ay-sDF_vuLq-h-MN_bfXA1QD0QbWxnWv6qf-1fQM4L3hI</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Ranecki, Robert</creator><creator>Baumann, Benedikt</creator><creator>Lach, Stefan</creator><creator>Ziegler, Christiane</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9087-7233</orcidid><orcidid>https://orcid.org/0000-0002-1068-9644</orcidid><orcidid>https://orcid.org/0000-0002-7963-3729</orcidid></search><sort><creationdate>20240221</creationdate><title>Self-Assembly of the Chiral Donor–Acceptor Molecule DCzDCN on Cu(100)</title><author>Ranecki, Robert ; Baumann, Benedikt ; Lach, Stefan ; Ziegler, Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-7392bf5e989ce49b216bc1ee1e38d549f2e2de7cd7484d76f6169e6b12f50bfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Organic Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranecki, Robert</creatorcontrib><creatorcontrib>Baumann, Benedikt</creatorcontrib><creatorcontrib>Lach, Stefan</creatorcontrib><creatorcontrib>Ziegler, Christiane</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranecki, Robert</au><au>Baumann, Benedikt</au><au>Lach, Stefan</au><au>Ziegler, Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembly of the Chiral Donor–Acceptor Molecule DCzDCN on Cu(100)</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-02-21</date><risdate>2024</risdate><volume>16</volume><issue>7</issue><spage>9108</spage><epage>9116</epage><pages>9108-9116</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Donor–acceptor (D–A) structured molecules are essential components of organic electronics. The respective molecular structures of these molecules and their synthesis are primarily determined by the intended area of application. Typically, D–A molecules promote charge separation and transport in organic photovoltaics or organic field-effect transistors. D–A molecules showing a larger twist angle between D and A units are, e.g., essential for the development of high internal quantum efficiency in organic light-emitting diodes. A prototypical molecule of this D–A type is DCzDCN (5-(4,6-diphenyl-1,3,5-triazine-2-yl)­benzene-1,3-dinitrile). In most cases, these molecules are only investigated regarding their electronic and structural interaction in bulk aggregates but not in ultrathin films supported by a metallic substrate. Here, we present growth and electronic structure studies of DCzDCN on a Cu(100) surface. We used a complementary approach through the use of scanning tunneling microscopy/spectroscopy (STM and STS), ultraviolet/inverse photoemission spectroscopy (UPS and IPES), and single-molecule density functional theory (DFT) calculations. This method combination enabled us to investigate the adsorption geometry (STM) and the local electronic states near the Fermi energy (E F) of a single adsorbed molecule (using STS) and to compare these data with the integral overall electronic structure of the DCzDCN/Cu(100) interface (using UPS/IPES). The orientation of the molecules with the donor part toward the substrate results in a chiral resolution at the interface due to the molecular as well as the substrate symmetry and additional strong molecular electrostatic forces induced by the charge distribution of the twisted dicarbonitrile part. Thus, the formation of various bulk-unlike homochiral structures and the appearance of hybrid interface states modify the molecular electronic properties of the DCzDCN/Cu(100) system, e.g., the transport gap by −1.3 eV compared to that of a single DCzDCN molecule. This may be useful not only for optoelectronic applications but also in organic spintronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38341806</pmid><doi>10.1021/acsami.3c16918</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9087-7233</orcidid><orcidid>https://orcid.org/0000-0002-1068-9644</orcidid><orcidid>https://orcid.org/0000-0002-7963-3729</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-02, Vol.16 (7), p.9108-9116
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2925485824
source American Chemical Society Journals
subjects Organic Electronic Devices
title Self-Assembly of the Chiral Donor–Acceptor Molecule DCzDCN on Cu(100)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembly%20of%20the%20Chiral%20Donor%E2%80%93Acceptor%20Molecule%20DCzDCN%20on%20Cu(100)&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ranecki,%20Robert&rft.date=2024-02-21&rft.volume=16&rft.issue=7&rft.spage=9108&rft.epage=9116&rft.pages=9108-9116&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c16918&rft_dat=%3Cproquest_cross%3E2925485824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925485824&rft_id=info:pmid/38341806&rfr_iscdi=true