Compact Model and Detailed Balance Limit for a Dual n‐Type Direct Z‐Scheme Heterojunction

This paper presents a comprehensive study on a compact model and the detailed balance limit for a dual n‐type direct Z‐scheme heterojunction. The compact model developed in this work describes the current–voltage (IV) characteristics of the staggered heterojunction under one‐sided illumination. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-07, Vol.20 (27), p.e2307712-n/a
Hauptverfasser: Lauwaert, Johan, Jacob, Nithin Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page e2307712
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Lauwaert, Johan
Jacob, Nithin Thomas
description This paper presents a comprehensive study on a compact model and the detailed balance limit for a dual n‐type direct Z‐scheme heterojunction. The compact model developed in this work describes the current–voltage (IV) characteristics of the staggered heterojunction under one‐sided illumination. The model incorporates charge neutrality, surface recombination, thermionic emission over the barrier, and surface potentials. By considering these factors, the IV curve of the staggered heterojunction is captured, shedding light on the charge transfer and separation processes within the device. The heterojunction device consists of two photosystems: photosystem one (PSI) with a wide band gap and photosystem two (PSII) with a narrow band gap. Furthermore, the paper establishes the detailed balance limit for the efficiency of the dual n‐type direct Z‐scheme heterojunction. The maximum achievable efficiency, estimated to be 11.4%, is determined by the interplay between the band gap of PSII and the empirical relation for the maximum barrier for electrons leaving PSII. This detailed balance limit represents the highest efficiency that can be attained, accounting for carrier generation, recombination, and charge transfer mechanisms. The compact model and the derived detailed balance limit provide insights for designing and improving the performance of direct Z‐scheme heterojunctions. This paper presents a study on a dual n‐type direct Z‐scheme heterojunction, emphasizing its compact model and detailed balance limit. Analyzing current–voltage characteristics, it integrates fundamental principles‐charge neutrality, surface recombination, thermionic emission, and surface potentials. The established detailed balance limit, at 11.4%, hinges on the interplay between PSII bandgap and the maximum barrier for electron departure. The insights aid in advancing direct Z‐scheme heterojunctions for efficient solar energy conversion in artificial photosynthesis and renewable energy applications.
doi_str_mv 10.1002/smll.202307712
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925483653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075680513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4132-12bbae083e1b53a256607e3efaf8c72b1eaa3ca12fa8c11180050ed4a8f16fd43</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVJaL567TEIcunFjkbaD_nY2E1d2JBD0kuhiFntLFmzu3KlXYJv_Qn9jfklkXHqQC45zQw878vwMPYZxBSEkJeha9upFFKJPAf5gR1DBmqSaTk72O8gjthJCCshFMgk_8iOlFaJzPL8mP2eu26NduA3rqKWY1_xBQ3YtFTxK2yxt8SLpmsGXjvPkS9GbHn_9Pff_WZNfNF4itlf8b6zD9QRX9JA3q3G3g6N68_YYY1toE8v85T9vP52P19OitvvP-Zfi4lNQMkJyLJEEloRlKlCmWaZyElRjbW2uSyBEJVFkDVqCwBaiFRQlaCuIaurRJ2yL7vetXd_RgqD6ZpgqY3_kxuDkTOZJlplqYroxRt05Ubfx-9MdJhmWqSwpaY7ynoXgqfarH3Tod8YEGYr3mzFm734GDh_qR3Ljqo9_t90BGY74DG63bxTZ-5uiuK1_Bk40pBL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075680513</pqid></control><display><type>article</type><title>Compact Model and Detailed Balance Limit for a Dual n‐Type Direct Z‐Scheme Heterojunction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lauwaert, Johan ; Jacob, Nithin Thomas</creator><creatorcontrib>Lauwaert, Johan ; Jacob, Nithin Thomas</creatorcontrib><description>This paper presents a comprehensive study on a compact model and the detailed balance limit for a dual n‐type direct Z‐scheme heterojunction. The compact model developed in this work describes the current–voltage (IV) characteristics of the staggered heterojunction under one‐sided illumination. The model incorporates charge neutrality, surface recombination, thermionic emission over the barrier, and surface potentials. By considering these factors, the IV curve of the staggered heterojunction is captured, shedding light on the charge transfer and separation processes within the device. The heterojunction device consists of two photosystems: photosystem one (PSI) with a wide band gap and photosystem two (PSII) with a narrow band gap. Furthermore, the paper establishes the detailed balance limit for the efficiency of the dual n‐type direct Z‐scheme heterojunction. The maximum achievable efficiency, estimated to be 11.4%, is determined by the interplay between the band gap of PSII and the empirical relation for the maximum barrier for electrons leaving PSII. This detailed balance limit represents the highest efficiency that can be attained, accounting for carrier generation, recombination, and charge transfer mechanisms. The compact model and the derived detailed balance limit provide insights for designing and improving the performance of direct Z‐scheme heterojunctions. This paper presents a study on a dual n‐type direct Z‐scheme heterojunction, emphasizing its compact model and detailed balance limit. Analyzing current–voltage characteristics, it integrates fundamental principles‐charge neutrality, surface recombination, thermionic emission, and surface potentials. The established detailed balance limit, at 11.4%, hinges on the interplay between PSII bandgap and the maximum barrier for electron departure. The insights aid in advancing direct Z‐scheme heterojunctions for efficient solar energy conversion in artificial photosynthesis and renewable energy applications.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307712</identifier><identifier>PMID: 38342677</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier recombination ; Charge transfer ; detailed balance ; Efficiency ; Energy gap ; Heterojunction devices ; Thermionic emission ; Z‐scheme</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-07, Vol.20 (27), p.e2307712-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4132-12bbae083e1b53a256607e3efaf8c72b1eaa3ca12fa8c11180050ed4a8f16fd43</citedby><cites>FETCH-LOGICAL-c4132-12bbae083e1b53a256607e3efaf8c72b1eaa3ca12fa8c11180050ed4a8f16fd43</cites><orcidid>0000-0002-0757-2509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202307712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202307712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38342677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lauwaert, Johan</creatorcontrib><creatorcontrib>Jacob, Nithin Thomas</creatorcontrib><title>Compact Model and Detailed Balance Limit for a Dual n‐Type Direct Z‐Scheme Heterojunction</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>This paper presents a comprehensive study on a compact model and the detailed balance limit for a dual n‐type direct Z‐scheme heterojunction. The compact model developed in this work describes the current–voltage (IV) characteristics of the staggered heterojunction under one‐sided illumination. The model incorporates charge neutrality, surface recombination, thermionic emission over the barrier, and surface potentials. By considering these factors, the IV curve of the staggered heterojunction is captured, shedding light on the charge transfer and separation processes within the device. The heterojunction device consists of two photosystems: photosystem one (PSI) with a wide band gap and photosystem two (PSII) with a narrow band gap. Furthermore, the paper establishes the detailed balance limit for the efficiency of the dual n‐type direct Z‐scheme heterojunction. The maximum achievable efficiency, estimated to be 11.4%, is determined by the interplay between the band gap of PSII and the empirical relation for the maximum barrier for electrons leaving PSII. This detailed balance limit represents the highest efficiency that can be attained, accounting for carrier generation, recombination, and charge transfer mechanisms. The compact model and the derived detailed balance limit provide insights for designing and improving the performance of direct Z‐scheme heterojunctions. This paper presents a study on a dual n‐type direct Z‐scheme heterojunction, emphasizing its compact model and detailed balance limit. Analyzing current–voltage characteristics, it integrates fundamental principles‐charge neutrality, surface recombination, thermionic emission, and surface potentials. The established detailed balance limit, at 11.4%, hinges on the interplay between PSII bandgap and the maximum barrier for electron departure. The insights aid in advancing direct Z‐scheme heterojunctions for efficient solar energy conversion in artificial photosynthesis and renewable energy applications.</description><subject>Carrier recombination</subject><subject>Charge transfer</subject><subject>detailed balance</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Heterojunction devices</subject><subject>Thermionic emission</subject><subject>Z‐scheme</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVJaL567TEIcunFjkbaD_nY2E1d2JBD0kuhiFntLFmzu3KlXYJv_Qn9jfklkXHqQC45zQw878vwMPYZxBSEkJeha9upFFKJPAf5gR1DBmqSaTk72O8gjthJCCshFMgk_8iOlFaJzPL8mP2eu26NduA3rqKWY1_xBQ3YtFTxK2yxt8SLpmsGXjvPkS9GbHn_9Pff_WZNfNF4itlf8b6zD9QRX9JA3q3G3g6N68_YYY1toE8v85T9vP52P19OitvvP-Zfi4lNQMkJyLJEEloRlKlCmWaZyElRjbW2uSyBEJVFkDVqCwBaiFRQlaCuIaurRJ2yL7vetXd_RgqD6ZpgqY3_kxuDkTOZJlplqYroxRt05Ubfx-9MdJhmWqSwpaY7ynoXgqfarH3Tod8YEGYr3mzFm734GDh_qR3Ljqo9_t90BGY74DG63bxTZ-5uiuK1_Bk40pBL</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Lauwaert, Johan</creator><creator>Jacob, Nithin Thomas</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0757-2509</orcidid></search><sort><creationdate>20240701</creationdate><title>Compact Model and Detailed Balance Limit for a Dual n‐Type Direct Z‐Scheme Heterojunction</title><author>Lauwaert, Johan ; Jacob, Nithin Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4132-12bbae083e1b53a256607e3efaf8c72b1eaa3ca12fa8c11180050ed4a8f16fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier recombination</topic><topic>Charge transfer</topic><topic>detailed balance</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Heterojunction devices</topic><topic>Thermionic emission</topic><topic>Z‐scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauwaert, Johan</creatorcontrib><creatorcontrib>Jacob, Nithin Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauwaert, Johan</au><au>Jacob, Nithin Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact Model and Detailed Balance Limit for a Dual n‐Type Direct Z‐Scheme Heterojunction</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>20</volume><issue>27</issue><spage>e2307712</spage><epage>n/a</epage><pages>e2307712-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>This paper presents a comprehensive study on a compact model and the detailed balance limit for a dual n‐type direct Z‐scheme heterojunction. The compact model developed in this work describes the current–voltage (IV) characteristics of the staggered heterojunction under one‐sided illumination. The model incorporates charge neutrality, surface recombination, thermionic emission over the barrier, and surface potentials. By considering these factors, the IV curve of the staggered heterojunction is captured, shedding light on the charge transfer and separation processes within the device. The heterojunction device consists of two photosystems: photosystem one (PSI) with a wide band gap and photosystem two (PSII) with a narrow band gap. Furthermore, the paper establishes the detailed balance limit for the efficiency of the dual n‐type direct Z‐scheme heterojunction. The maximum achievable efficiency, estimated to be 11.4%, is determined by the interplay between the band gap of PSII and the empirical relation for the maximum barrier for electrons leaving PSII. This detailed balance limit represents the highest efficiency that can be attained, accounting for carrier generation, recombination, and charge transfer mechanisms. The compact model and the derived detailed balance limit provide insights for designing and improving the performance of direct Z‐scheme heterojunctions. This paper presents a study on a dual n‐type direct Z‐scheme heterojunction, emphasizing its compact model and detailed balance limit. Analyzing current–voltage characteristics, it integrates fundamental principles‐charge neutrality, surface recombination, thermionic emission, and surface potentials. The established detailed balance limit, at 11.4%, hinges on the interplay between PSII bandgap and the maximum barrier for electron departure. The insights aid in advancing direct Z‐scheme heterojunctions for efficient solar energy conversion in artificial photosynthesis and renewable energy applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38342677</pmid><doi>10.1002/smll.202307712</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0757-2509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-07, Vol.20 (27), p.e2307712-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2925483653
source Wiley Online Library Journals Frontfile Complete
subjects Carrier recombination
Charge transfer
detailed balance
Efficiency
Energy gap
Heterojunction devices
Thermionic emission
Z‐scheme
title Compact Model and Detailed Balance Limit for a Dual n‐Type Direct Z‐Scheme Heterojunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20Model%20and%20Detailed%20Balance%20Limit%20for%20a%20Dual%20n%E2%80%90Type%20Direct%20Z%E2%80%90Scheme%20Heterojunction&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lauwaert,%20Johan&rft.date=2024-07-01&rft.volume=20&rft.issue=27&rft.spage=e2307712&rft.epage=n/a&rft.pages=e2307712-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307712&rft_dat=%3Cproquest_cross%3E3075680513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075680513&rft_id=info:pmid/38342677&rfr_iscdi=true