Fixed points of uniformly lipschitzian mappings

Two fixed point theorems for uniformly lipschitzian mappings in metric spaces, due respectively to E. Lifšic and to T.-C. Lim and H.-K. Xu, are compared within the framework of the so-called CAT(0) spaces. It is shown that both results apply in this setting, and that Lifšic’s theorem gives a sharper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2006-08, Vol.65 (4), p.762-772
Hauptverfasser: Dhompongsa, S., Kirk, W.A., Sims, Brailey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 772
container_issue 4
container_start_page 762
container_title Nonlinear analysis
container_volume 65
creator Dhompongsa, S.
Kirk, W.A.
Sims, Brailey
description Two fixed point theorems for uniformly lipschitzian mappings in metric spaces, due respectively to E. Lifšic and to T.-C. Lim and H.-K. Xu, are compared within the framework of the so-called CAT(0) spaces. It is shown that both results apply in this setting, and that Lifšic’s theorem gives a sharper result. Also, a new property is introduced that yields a fixed point theorem for uniformly lipschitzian mappings in a class of hyperconvex spaces, a class which includes those possessing property ( P ) of Lim and Xu.
doi_str_mv 10.1016/j.na.2005.09.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29254573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X05008606</els_id><sourcerecordid>29254573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-c6844b7f461aa9d5ef2c23b697254ae33ba8938d24d836391326a7f1772a00533</originalsourceid><addsrcrecordid>eNp1kL1PwzAUxC0EEqWwM2aBLam_YidsqKKAhMQCEpv16tjgKrGDnSLKX0-iVmJiesvd794dQpcEFwQTsdgUHgqKcVngusCcH6EZqSTLS0rKYzTDTNC85OLtFJ2ltMEYE8nEDC1W7ts0WR-cH1IWbLb1zobYtbusdX3SH274ceCzDvre-fd0jk4stMlcHO4cva7uXpYP-dPz_ePy9inXnJIh16LifC0tFwSgbkpjqaZsLWpJSw6GsTVUNasaypuKCVYTRgVIS6SkMHZgbI6u99w-hs-tSYPqXNKmbcGbsE2K1iOolJMQ74U6hpSisaqProO4UwSraRm1UR7UtIzCtRqXGS1XBzYkDa2N4LVLfz45voTxhL7Z68xY9MuZqJJ2xmvTuGj0oJrg_g_5Bdwadlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29254573</pqid></control><display><type>article</type><title>Fixed points of uniformly lipschitzian mappings</title><source>Elsevier ScienceDirect Journals</source><creator>Dhompongsa, S. ; Kirk, W.A. ; Sims, Brailey</creator><creatorcontrib>Dhompongsa, S. ; Kirk, W.A. ; Sims, Brailey</creatorcontrib><description>Two fixed point theorems for uniformly lipschitzian mappings in metric spaces, due respectively to E. Lifšic and to T.-C. Lim and H.-K. Xu, are compared within the framework of the so-called CAT(0) spaces. It is shown that both results apply in this setting, and that Lifšic’s theorem gives a sharper result. Also, a new property is introduced that yields a fixed point theorem for uniformly lipschitzian mappings in a class of hyperconvex spaces, a class which includes those possessing property ( P ) of Lim and Xu.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2005.09.044</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>CAT spaces ; Exact sciences and technology ; Fixed points ; General topology ; Hyperconvex spaces ; Mathematical analysis ; Mathematics ; Operator theory ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Uniformly lipschitzian mappings</subject><ispartof>Nonlinear analysis, 2006-08, Vol.65 (4), p.762-772</ispartof><rights>2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-c6844b7f461aa9d5ef2c23b697254ae33ba8938d24d836391326a7f1772a00533</citedby><cites>FETCH-LOGICAL-c421t-c6844b7f461aa9d5ef2c23b697254ae33ba8938d24d836391326a7f1772a00533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X05008606$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17836003$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhompongsa, S.</creatorcontrib><creatorcontrib>Kirk, W.A.</creatorcontrib><creatorcontrib>Sims, Brailey</creatorcontrib><title>Fixed points of uniformly lipschitzian mappings</title><title>Nonlinear analysis</title><description>Two fixed point theorems for uniformly lipschitzian mappings in metric spaces, due respectively to E. Lifšic and to T.-C. Lim and H.-K. Xu, are compared within the framework of the so-called CAT(0) spaces. It is shown that both results apply in this setting, and that Lifšic’s theorem gives a sharper result. Also, a new property is introduced that yields a fixed point theorem for uniformly lipschitzian mappings in a class of hyperconvex spaces, a class which includes those possessing property ( P ) of Lim and Xu.</description><subject>CAT spaces</subject><subject>Exact sciences and technology</subject><subject>Fixed points</subject><subject>General topology</subject><subject>Hyperconvex spaces</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operator theory</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Uniformly lipschitzian mappings</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAUxC0EEqWwM2aBLam_YidsqKKAhMQCEpv16tjgKrGDnSLKX0-iVmJiesvd794dQpcEFwQTsdgUHgqKcVngusCcH6EZqSTLS0rKYzTDTNC85OLtFJ2ltMEYE8nEDC1W7ts0WR-cH1IWbLb1zobYtbusdX3SH274ceCzDvre-fd0jk4stMlcHO4cva7uXpYP-dPz_ePy9inXnJIh16LifC0tFwSgbkpjqaZsLWpJSw6GsTVUNasaypuKCVYTRgVIS6SkMHZgbI6u99w-hs-tSYPqXNKmbcGbsE2K1iOolJMQ74U6hpSisaqProO4UwSraRm1UR7UtIzCtRqXGS1XBzYkDa2N4LVLfz45voTxhL7Z68xY9MuZqJJ2xmvTuGj0oJrg_g_5Bdwadlc</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Dhompongsa, S.</creator><creator>Kirk, W.A.</creator><creator>Sims, Brailey</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060801</creationdate><title>Fixed points of uniformly lipschitzian mappings</title><author>Dhompongsa, S. ; Kirk, W.A. ; Sims, Brailey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-c6844b7f461aa9d5ef2c23b697254ae33ba8938d24d836391326a7f1772a00533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>CAT spaces</topic><topic>Exact sciences and technology</topic><topic>Fixed points</topic><topic>General topology</topic><topic>Hyperconvex spaces</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operator theory</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Uniformly lipschitzian mappings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhompongsa, S.</creatorcontrib><creatorcontrib>Kirk, W.A.</creatorcontrib><creatorcontrib>Sims, Brailey</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhompongsa, S.</au><au>Kirk, W.A.</au><au>Sims, Brailey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed points of uniformly lipschitzian mappings</atitle><jtitle>Nonlinear analysis</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>65</volume><issue>4</issue><spage>762</spage><epage>772</epage><pages>762-772</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Two fixed point theorems for uniformly lipschitzian mappings in metric spaces, due respectively to E. Lifšic and to T.-C. Lim and H.-K. Xu, are compared within the framework of the so-called CAT(0) spaces. It is shown that both results apply in this setting, and that Lifšic’s theorem gives a sharper result. Also, a new property is introduced that yields a fixed point theorem for uniformly lipschitzian mappings in a class of hyperconvex spaces, a class which includes those possessing property ( P ) of Lim and Xu.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2005.09.044</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2006-08, Vol.65 (4), p.762-772
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_29254573
source Elsevier ScienceDirect Journals
subjects CAT spaces
Exact sciences and technology
Fixed points
General topology
Hyperconvex spaces
Mathematical analysis
Mathematics
Operator theory
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Uniformly lipschitzian mappings
title Fixed points of uniformly lipschitzian mappings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20points%20of%20uniformly%20lipschitzian%20mappings&rft.jtitle=Nonlinear%20analysis&rft.au=Dhompongsa,%20S.&rft.date=2006-08-01&rft.volume=65&rft.issue=4&rft.spage=762&rft.epage=772&rft.pages=762-772&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2005.09.044&rft_dat=%3Cproquest_cross%3E29254573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29254573&rft_id=info:pmid/&rft_els_id=S0362546X05008606&rfr_iscdi=true