Fracture characterization in patterned thin films by cross-sectional nanoindentation

A testing technique based on cross-sectional nanoindentation has been used to assess the mechanical reliability of interconnect structures. A Berkovich indenter was used to initiate fracture in a silicon substrate and cracks propagated through the structure. To better control crack growth and to con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2006-08, Vol.54 (13), p.3453-3462
Hauptverfasser: Ocaña, I., Molina-Aldareguia, J.M., Gonzalez, D., Elizalde, M.R., Sánchez, J.M., Martínez-Esnaola, J.M., Gil Sevillano, J., Scherban, T., Pantuso, D., Sun, B., Xu, G., Miner, B., He, J., Maiz, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3462
container_issue 13
container_start_page 3453
container_title Acta materialia
container_volume 54
creator Ocaña, I.
Molina-Aldareguia, J.M.
Gonzalez, D.
Elizalde, M.R.
Sánchez, J.M.
Martínez-Esnaola, J.M.
Gil Sevillano, J.
Scherban, T.
Pantuso, D.
Sun, B.
Xu, G.
Miner, B.
He, J.
Maiz, J.
description A testing technique based on cross-sectional nanoindentation has been used to assess the mechanical reliability of interconnect structures. A Berkovich indenter was used to initiate fracture in a silicon substrate and cracks propagated through the structure. To better control crack growth and to convert the problem into two dimensions, a trench parallel to the indentation surface was previously machined using a focused ion beam. The crack lengths obtained for different material systems in the interconnect structure correlate well with the fracture energies measured for the same materials in blanket films. Finite element model simulations incorporating cohesive elements have been used to model the fracture processes and to explain the different cracking behaviour observed.
doi_str_mv 10.1016/j.actamat.2006.03.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29251353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645406002370</els_id><sourcerecordid>29251353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-ab105b673466e43414c5bcca500b9fd98ffe338ab10e1e58f7cd0f42ee6935973</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhosoqKs_QehF8dI6-Wrak4i4Kix40XNI0wlm6aZr0hXWX2_qLnjTUybD884wT5ZdECgJkOpmWWoz6pUeSwpQlcBKoPIgOyG1ZAXlgh2mmommqLjgx9lpjEsAQiWHk-x1HlJ4EzA373oqMbgvPbrB587naz2mhscuH9_T17p-FfN2m5swxFhENBOo-9xrPzjfoR9_omfZkdV9xPP9O8ve5g-v90_F4uXx-f5uURgObCx0S0C0lWS8qpAzTrgRrTFaALSN7ZraWmSsnjAkKGorTQeWU8SqSedINsuudnPXYfjYYBzVykWDfa89DpuoaENFOpwl8PpPkEBNSV03jCdU7NCfGwNatQ5upcM2QWrSrZZqr1tNuhUwlXSn3OV-hY5G9zZob1z8DctGSqDT_Nsdh0nMp8OgonHoDXYuJJ-qG9w_m74BmxaZmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082188934</pqid></control><display><type>article</type><title>Fracture characterization in patterned thin films by cross-sectional nanoindentation</title><source>Elsevier ScienceDirect Journals</source><creator>Ocaña, I. ; Molina-Aldareguia, J.M. ; Gonzalez, D. ; Elizalde, M.R. ; Sánchez, J.M. ; Martínez-Esnaola, J.M. ; Gil Sevillano, J. ; Scherban, T. ; Pantuso, D. ; Sun, B. ; Xu, G. ; Miner, B. ; He, J. ; Maiz, J.</creator><creatorcontrib>Ocaña, I. ; Molina-Aldareguia, J.M. ; Gonzalez, D. ; Elizalde, M.R. ; Sánchez, J.M. ; Martínez-Esnaola, J.M. ; Gil Sevillano, J. ; Scherban, T. ; Pantuso, D. ; Sun, B. ; Xu, G. ; Miner, B. ; He, J. ; Maiz, J.</creatorcontrib><description>A testing technique based on cross-sectional nanoindentation has been used to assess the mechanical reliability of interconnect structures. A Berkovich indenter was used to initiate fracture in a silicon substrate and cracks propagated through the structure. To better control crack growth and to convert the problem into two dimensions, a trench parallel to the indentation surface was previously machined using a focused ion beam. The crack lengths obtained for different material systems in the interconnect structure correlate well with the fracture energies measured for the same materials in blanket films. Finite element model simulations incorporating cohesive elements have been used to model the fracture processes and to explain the different cracking behaviour observed.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2006.03.027</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Cohesive model ; Computer simulation ; Crack initiation ; Crack propagation ; Cross sections ; Exact sciences and technology ; Fracture ; Fracture mechanics ; Fractures ; Indenters ; Interfaces ; Mathematical models ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Nanoindentation ; Thin films</subject><ispartof>Acta materialia, 2006-08, Vol.54 (13), p.3453-3462</ispartof><rights>2006 Acta Materialia Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-ab105b673466e43414c5bcca500b9fd98ffe338ab10e1e58f7cd0f42ee6935973</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645406002370$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17977024$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ocaña, I.</creatorcontrib><creatorcontrib>Molina-Aldareguia, J.M.</creatorcontrib><creatorcontrib>Gonzalez, D.</creatorcontrib><creatorcontrib>Elizalde, M.R.</creatorcontrib><creatorcontrib>Sánchez, J.M.</creatorcontrib><creatorcontrib>Martínez-Esnaola, J.M.</creatorcontrib><creatorcontrib>Gil Sevillano, J.</creatorcontrib><creatorcontrib>Scherban, T.</creatorcontrib><creatorcontrib>Pantuso, D.</creatorcontrib><creatorcontrib>Sun, B.</creatorcontrib><creatorcontrib>Xu, G.</creatorcontrib><creatorcontrib>Miner, B.</creatorcontrib><creatorcontrib>He, J.</creatorcontrib><creatorcontrib>Maiz, J.</creatorcontrib><title>Fracture characterization in patterned thin films by cross-sectional nanoindentation</title><title>Acta materialia</title><description>A testing technique based on cross-sectional nanoindentation has been used to assess the mechanical reliability of interconnect structures. A Berkovich indenter was used to initiate fracture in a silicon substrate and cracks propagated through the structure. To better control crack growth and to convert the problem into two dimensions, a trench parallel to the indentation surface was previously machined using a focused ion beam. The crack lengths obtained for different material systems in the interconnect structure correlate well with the fracture energies measured for the same materials in blanket films. Finite element model simulations incorporating cohesive elements have been used to model the fracture processes and to explain the different cracking behaviour observed.</description><subject>Applied sciences</subject><subject>Cohesive model</subject><subject>Computer simulation</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cross sections</subject><subject>Exact sciences and technology</subject><subject>Fracture</subject><subject>Fracture mechanics</subject><subject>Fractures</subject><subject>Indenters</subject><subject>Interfaces</subject><subject>Mathematical models</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Nanoindentation</subject><subject>Thin films</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhosoqKs_QehF8dI6-Wrak4i4Kix40XNI0wlm6aZr0hXWX2_qLnjTUybD884wT5ZdECgJkOpmWWoz6pUeSwpQlcBKoPIgOyG1ZAXlgh2mmommqLjgx9lpjEsAQiWHk-x1HlJ4EzA373oqMbgvPbrB587naz2mhscuH9_T17p-FfN2m5swxFhENBOo-9xrPzjfoR9_omfZkdV9xPP9O8ve5g-v90_F4uXx-f5uURgObCx0S0C0lWS8qpAzTrgRrTFaALSN7ZraWmSsnjAkKGorTQeWU8SqSedINsuudnPXYfjYYBzVykWDfa89DpuoaENFOpwl8PpPkEBNSV03jCdU7NCfGwNatQ5upcM2QWrSrZZqr1tNuhUwlXSn3OV-hY5G9zZob1z8DctGSqDT_Nsdh0nMp8OgonHoDXYuJJ-qG9w_m74BmxaZmw</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Ocaña, I.</creator><creator>Molina-Aldareguia, J.M.</creator><creator>Gonzalez, D.</creator><creator>Elizalde, M.R.</creator><creator>Sánchez, J.M.</creator><creator>Martínez-Esnaola, J.M.</creator><creator>Gil Sevillano, J.</creator><creator>Scherban, T.</creator><creator>Pantuso, D.</creator><creator>Sun, B.</creator><creator>Xu, G.</creator><creator>Miner, B.</creator><creator>He, J.</creator><creator>Maiz, J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060801</creationdate><title>Fracture characterization in patterned thin films by cross-sectional nanoindentation</title><author>Ocaña, I. ; Molina-Aldareguia, J.M. ; Gonzalez, D. ; Elizalde, M.R. ; Sánchez, J.M. ; Martínez-Esnaola, J.M. ; Gil Sevillano, J. ; Scherban, T. ; Pantuso, D. ; Sun, B. ; Xu, G. ; Miner, B. ; He, J. ; Maiz, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-ab105b673466e43414c5bcca500b9fd98ffe338ab10e1e58f7cd0f42ee6935973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Cohesive model</topic><topic>Computer simulation</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cross sections</topic><topic>Exact sciences and technology</topic><topic>Fracture</topic><topic>Fracture mechanics</topic><topic>Fractures</topic><topic>Indenters</topic><topic>Interfaces</topic><topic>Mathematical models</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Nanoindentation</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ocaña, I.</creatorcontrib><creatorcontrib>Molina-Aldareguia, J.M.</creatorcontrib><creatorcontrib>Gonzalez, D.</creatorcontrib><creatorcontrib>Elizalde, M.R.</creatorcontrib><creatorcontrib>Sánchez, J.M.</creatorcontrib><creatorcontrib>Martínez-Esnaola, J.M.</creatorcontrib><creatorcontrib>Gil Sevillano, J.</creatorcontrib><creatorcontrib>Scherban, T.</creatorcontrib><creatorcontrib>Pantuso, D.</creatorcontrib><creatorcontrib>Sun, B.</creatorcontrib><creatorcontrib>Xu, G.</creatorcontrib><creatorcontrib>Miner, B.</creatorcontrib><creatorcontrib>He, J.</creatorcontrib><creatorcontrib>Maiz, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ocaña, I.</au><au>Molina-Aldareguia, J.M.</au><au>Gonzalez, D.</au><au>Elizalde, M.R.</au><au>Sánchez, J.M.</au><au>Martínez-Esnaola, J.M.</au><au>Gil Sevillano, J.</au><au>Scherban, T.</au><au>Pantuso, D.</au><au>Sun, B.</au><au>Xu, G.</au><au>Miner, B.</au><au>He, J.</au><au>Maiz, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture characterization in patterned thin films by cross-sectional nanoindentation</atitle><jtitle>Acta materialia</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>54</volume><issue>13</issue><spage>3453</spage><epage>3462</epage><pages>3453-3462</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>A testing technique based on cross-sectional nanoindentation has been used to assess the mechanical reliability of interconnect structures. A Berkovich indenter was used to initiate fracture in a silicon substrate and cracks propagated through the structure. To better control crack growth and to convert the problem into two dimensions, a trench parallel to the indentation surface was previously machined using a focused ion beam. The crack lengths obtained for different material systems in the interconnect structure correlate well with the fracture energies measured for the same materials in blanket films. Finite element model simulations incorporating cohesive elements have been used to model the fracture processes and to explain the different cracking behaviour observed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2006.03.027</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2006-08, Vol.54 (13), p.3453-3462
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_29251353
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cohesive model
Computer simulation
Crack initiation
Crack propagation
Cross sections
Exact sciences and technology
Fracture
Fracture mechanics
Fractures
Indenters
Interfaces
Mathematical models
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Nanoindentation
Thin films
title Fracture characterization in patterned thin films by cross-sectional nanoindentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20characterization%20in%20patterned%20thin%20films%20by%20cross-sectional%20nanoindentation&rft.jtitle=Acta%20materialia&rft.au=Oca%C3%B1a,%20I.&rft.date=2006-08-01&rft.volume=54&rft.issue=13&rft.spage=3453&rft.epage=3462&rft.pages=3453-3462&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2006.03.027&rft_dat=%3Cproquest_cross%3E29251353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082188934&rft_id=info:pmid/&rft_els_id=S1359645406002370&rfr_iscdi=true