Graded-Band-Gap Zinc–Tin Oxide Thin-Film Transistors with a Vertically Stacked Structure for Wavelength-Selective Photodetection

Filter-free wavelength-selective photodetectors have garnered significant attention due to the growing demand for smart sensors, artificial intelligence, the Internet of Everything, and so forth. However, the challenges associated with large-scale preparation and compatibility with complementary met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-02, Vol.16 (7), p.9060-9067
Hauptverfasser: Teng, Jiahui, Chen, Yantao, Huang, Chunming, Yang, Ming, Zhu, Bao, Liu, Wen-Jun, Ding, Shi-Jin, Wu, Xiaohan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9067
container_issue 7
container_start_page 9060
container_title ACS applied materials & interfaces
container_volume 16
creator Teng, Jiahui
Chen, Yantao
Huang, Chunming
Yang, Ming
Zhu, Bao
Liu, Wen-Jun
Ding, Shi-Jin
Wu, Xiaohan
description Filter-free wavelength-selective photodetectors have garnered significant attention due to the growing demand for smart sensors, artificial intelligence, the Internet of Everything, and so forth. However, the challenges associated with large-scale preparation and compatibility with complementary metal-oxide-semiconductor (CMOS) technology limit their wide-ranging applications. In this work, we address the challenges by constructing vertically stacked graded-band-gap zinc–tin oxide (ZTO) thin-film transistors (TFTs) specifically designed for wavelength-selective photodetection. The ZTO thin films with various band gaps are fabricated via atomic layer deposition (ALD) by varying the ALD cycle ratios of zinc oxide (ZnO) and SnO2. The ZTO film with a small Sn ratio exhibits a decreased band gap, and the resultant TFT shows a degraded performance, which can be attributed to the Sn4+ dopant introducing a series of deep-state energy levels in the ZnO band gap. As the ratio of Sn increases further, the band gap of the ZTO also increases, and the mobility of the ZTO TFT increases up to 30 cm2/V s, with a positive shift of the threshold voltage. The photodetectors employing ZTO thin films with distinct band gaps show different spectral responsivities. Then, vertically stacked ZTO (S-ZTO) thin films, with gradient band gaps increasing from the bottom to the top, have been successfully deposited using consecutive ALD technology. The S-ZTO TFT shows decent performance with a mobility of 18.4 cm2/V s, a threshold voltage of 0.5 V, an on–off current ratio higher than 107, and excellent stability under ambient conditions. The resultant S-ZTO TFT also exhibits obviously distinct photoresponses to light at different wavelength ranges. Furthermore, a device array of S-ZTO TFTs demonstrates color imaging by precisely reconstructing patterned illuminations with different wavelengths. Therefore, this work provides CMOS-compatible and structure-compact wavelength-selective photodetectors for advanced and integrable optoelectronic applications.
doi_str_mv 10.1021/acsami.3c18737
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925039500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925039500</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-383495f627c33d31d2bbdbdfe9b4a70021f8ca4ab40c1264212676cc4930d0d23</originalsourceid><addsrcrecordid>eNp1kMtOGzEUhq0KVALtliXyEiFN6tvMZJaAmoCEBBJpK3UzOmN7iMOMndqeADvEK_CGPEmNkrLr5lyk7_yyP4QOKRlTwug3kAF6M-aSTkpefkIjWgmRTVjOdj5mIfbQfghLQgrOSP4Z7fEJ50VB6Qi9zDworbIzsCqbwQr_Nla-Pb_OjcXXj0ZpPF8Ym01N1-O5BxtMiM4H_GDiAgP-qX00ErruCd9GkPdape4HGQevces8_gVr3Wl7FxfZbRpkNGuNbxYuOqXj--rsF7TbQhf0120_QD-m3-fnF9nV9ezy_PQqA85JzNKbRZW3BSsl54pTxZpGNarVVSOgJElGO5EgoBFEUlYIlkpZSCkqThRRjB-g403uyrs_gw6x7k2QuuvAajeEmlUsJ7zKCUnoeINK70Lwuq1X3vTgn2pK6nfv9cZ7vfWeDo622UPTa_WB_xOdgJMNkA7rpRu8TV_9X9pfoC2PpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925039500</pqid></control><display><type>article</type><title>Graded-Band-Gap Zinc–Tin Oxide Thin-Film Transistors with a Vertically Stacked Structure for Wavelength-Selective Photodetection</title><source>American Chemical Society Journals</source><creator>Teng, Jiahui ; Chen, Yantao ; Huang, Chunming ; Yang, Ming ; Zhu, Bao ; Liu, Wen-Jun ; Ding, Shi-Jin ; Wu, Xiaohan</creator><creatorcontrib>Teng, Jiahui ; Chen, Yantao ; Huang, Chunming ; Yang, Ming ; Zhu, Bao ; Liu, Wen-Jun ; Ding, Shi-Jin ; Wu, Xiaohan</creatorcontrib><description>Filter-free wavelength-selective photodetectors have garnered significant attention due to the growing demand for smart sensors, artificial intelligence, the Internet of Everything, and so forth. However, the challenges associated with large-scale preparation and compatibility with complementary metal-oxide-semiconductor (CMOS) technology limit their wide-ranging applications. In this work, we address the challenges by constructing vertically stacked graded-band-gap zinc–tin oxide (ZTO) thin-film transistors (TFTs) specifically designed for wavelength-selective photodetection. The ZTO thin films with various band gaps are fabricated via atomic layer deposition (ALD) by varying the ALD cycle ratios of zinc oxide (ZnO) and SnO2. The ZTO film with a small Sn ratio exhibits a decreased band gap, and the resultant TFT shows a degraded performance, which can be attributed to the Sn4+ dopant introducing a series of deep-state energy levels in the ZnO band gap. As the ratio of Sn increases further, the band gap of the ZTO also increases, and the mobility of the ZTO TFT increases up to 30 cm2/V s, with a positive shift of the threshold voltage. The photodetectors employing ZTO thin films with distinct band gaps show different spectral responsivities. Then, vertically stacked ZTO (S-ZTO) thin films, with gradient band gaps increasing from the bottom to the top, have been successfully deposited using consecutive ALD technology. The S-ZTO TFT shows decent performance with a mobility of 18.4 cm2/V s, a threshold voltage of 0.5 V, an on–off current ratio higher than 107, and excellent stability under ambient conditions. The resultant S-ZTO TFT also exhibits obviously distinct photoresponses to light at different wavelength ranges. Furthermore, a device array of S-ZTO TFTs demonstrates color imaging by precisely reconstructing patterned illuminations with different wavelengths. Therefore, this work provides CMOS-compatible and structure-compact wavelength-selective photodetectors for advanced and integrable optoelectronic applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c18737</identifier><identifier>PMID: 38336611</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2024-02, Vol.16 (7), p.9060-9067</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-383495f627c33d31d2bbdbdfe9b4a70021f8ca4ab40c1264212676cc4930d0d23</citedby><cites>FETCH-LOGICAL-a330t-383495f627c33d31d2bbdbdfe9b4a70021f8ca4ab40c1264212676cc4930d0d23</cites><orcidid>0000-0002-5766-089X ; 0000-0003-2616-679X ; 0000-0002-8698-3516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c18737$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c18737$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38336611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teng, Jiahui</creatorcontrib><creatorcontrib>Chen, Yantao</creatorcontrib><creatorcontrib>Huang, Chunming</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Zhu, Bao</creatorcontrib><creatorcontrib>Liu, Wen-Jun</creatorcontrib><creatorcontrib>Ding, Shi-Jin</creatorcontrib><creatorcontrib>Wu, Xiaohan</creatorcontrib><title>Graded-Band-Gap Zinc–Tin Oxide Thin-Film Transistors with a Vertically Stacked Structure for Wavelength-Selective Photodetection</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Filter-free wavelength-selective photodetectors have garnered significant attention due to the growing demand for smart sensors, artificial intelligence, the Internet of Everything, and so forth. However, the challenges associated with large-scale preparation and compatibility with complementary metal-oxide-semiconductor (CMOS) technology limit their wide-ranging applications. In this work, we address the challenges by constructing vertically stacked graded-band-gap zinc–tin oxide (ZTO) thin-film transistors (TFTs) specifically designed for wavelength-selective photodetection. The ZTO thin films with various band gaps are fabricated via atomic layer deposition (ALD) by varying the ALD cycle ratios of zinc oxide (ZnO) and SnO2. The ZTO film with a small Sn ratio exhibits a decreased band gap, and the resultant TFT shows a degraded performance, which can be attributed to the Sn4+ dopant introducing a series of deep-state energy levels in the ZnO band gap. As the ratio of Sn increases further, the band gap of the ZTO also increases, and the mobility of the ZTO TFT increases up to 30 cm2/V s, with a positive shift of the threshold voltage. The photodetectors employing ZTO thin films with distinct band gaps show different spectral responsivities. Then, vertically stacked ZTO (S-ZTO) thin films, with gradient band gaps increasing from the bottom to the top, have been successfully deposited using consecutive ALD technology. The S-ZTO TFT shows decent performance with a mobility of 18.4 cm2/V s, a threshold voltage of 0.5 V, an on–off current ratio higher than 107, and excellent stability under ambient conditions. The resultant S-ZTO TFT also exhibits obviously distinct photoresponses to light at different wavelength ranges. Furthermore, a device array of S-ZTO TFTs demonstrates color imaging by precisely reconstructing patterned illuminations with different wavelengths. Therefore, this work provides CMOS-compatible and structure-compact wavelength-selective photodetectors for advanced and integrable optoelectronic applications.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOGzEUhq0KVALtliXyEiFN6tvMZJaAmoCEBBJpK3UzOmN7iMOMndqeADvEK_CGPEmNkrLr5lyk7_yyP4QOKRlTwug3kAF6M-aSTkpefkIjWgmRTVjOdj5mIfbQfghLQgrOSP4Z7fEJ50VB6Qi9zDworbIzsCqbwQr_Nla-Pb_OjcXXj0ZpPF8Ym01N1-O5BxtMiM4H_GDiAgP-qX00ErruCd9GkPdape4HGQevces8_gVr3Wl7FxfZbRpkNGuNbxYuOqXj--rsF7TbQhf0120_QD-m3-fnF9nV9ezy_PQqA85JzNKbRZW3BSsl54pTxZpGNarVVSOgJElGO5EgoBFEUlYIlkpZSCkqThRRjB-g403uyrs_gw6x7k2QuuvAajeEmlUsJ7zKCUnoeINK70Lwuq1X3vTgn2pK6nfv9cZ7vfWeDo622UPTa_WB_xOdgJMNkA7rpRu8TV_9X9pfoC2PpQ</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Teng, Jiahui</creator><creator>Chen, Yantao</creator><creator>Huang, Chunming</creator><creator>Yang, Ming</creator><creator>Zhu, Bao</creator><creator>Liu, Wen-Jun</creator><creator>Ding, Shi-Jin</creator><creator>Wu, Xiaohan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5766-089X</orcidid><orcidid>https://orcid.org/0000-0003-2616-679X</orcidid><orcidid>https://orcid.org/0000-0002-8698-3516</orcidid></search><sort><creationdate>20240221</creationdate><title>Graded-Band-Gap Zinc–Tin Oxide Thin-Film Transistors with a Vertically Stacked Structure for Wavelength-Selective Photodetection</title><author>Teng, Jiahui ; Chen, Yantao ; Huang, Chunming ; Yang, Ming ; Zhu, Bao ; Liu, Wen-Jun ; Ding, Shi-Jin ; Wu, Xiaohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-383495f627c33d31d2bbdbdfe9b4a70021f8ca4ab40c1264212676cc4930d0d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teng, Jiahui</creatorcontrib><creatorcontrib>Chen, Yantao</creatorcontrib><creatorcontrib>Huang, Chunming</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Zhu, Bao</creatorcontrib><creatorcontrib>Liu, Wen-Jun</creatorcontrib><creatorcontrib>Ding, Shi-Jin</creatorcontrib><creatorcontrib>Wu, Xiaohan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teng, Jiahui</au><au>Chen, Yantao</au><au>Huang, Chunming</au><au>Yang, Ming</au><au>Zhu, Bao</au><au>Liu, Wen-Jun</au><au>Ding, Shi-Jin</au><au>Wu, Xiaohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graded-Band-Gap Zinc–Tin Oxide Thin-Film Transistors with a Vertically Stacked Structure for Wavelength-Selective Photodetection</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-02-21</date><risdate>2024</risdate><volume>16</volume><issue>7</issue><spage>9060</spage><epage>9067</epage><pages>9060-9067</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Filter-free wavelength-selective photodetectors have garnered significant attention due to the growing demand for smart sensors, artificial intelligence, the Internet of Everything, and so forth. However, the challenges associated with large-scale preparation and compatibility with complementary metal-oxide-semiconductor (CMOS) technology limit their wide-ranging applications. In this work, we address the challenges by constructing vertically stacked graded-band-gap zinc–tin oxide (ZTO) thin-film transistors (TFTs) specifically designed for wavelength-selective photodetection. The ZTO thin films with various band gaps are fabricated via atomic layer deposition (ALD) by varying the ALD cycle ratios of zinc oxide (ZnO) and SnO2. The ZTO film with a small Sn ratio exhibits a decreased band gap, and the resultant TFT shows a degraded performance, which can be attributed to the Sn4+ dopant introducing a series of deep-state energy levels in the ZnO band gap. As the ratio of Sn increases further, the band gap of the ZTO also increases, and the mobility of the ZTO TFT increases up to 30 cm2/V s, with a positive shift of the threshold voltage. The photodetectors employing ZTO thin films with distinct band gaps show different spectral responsivities. Then, vertically stacked ZTO (S-ZTO) thin films, with gradient band gaps increasing from the bottom to the top, have been successfully deposited using consecutive ALD technology. The S-ZTO TFT shows decent performance with a mobility of 18.4 cm2/V s, a threshold voltage of 0.5 V, an on–off current ratio higher than 107, and excellent stability under ambient conditions. The resultant S-ZTO TFT also exhibits obviously distinct photoresponses to light at different wavelength ranges. Furthermore, a device array of S-ZTO TFTs demonstrates color imaging by precisely reconstructing patterned illuminations with different wavelengths. Therefore, this work provides CMOS-compatible and structure-compact wavelength-selective photodetectors for advanced and integrable optoelectronic applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38336611</pmid><doi>10.1021/acsami.3c18737</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5766-089X</orcidid><orcidid>https://orcid.org/0000-0003-2616-679X</orcidid><orcidid>https://orcid.org/0000-0002-8698-3516</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-02, Vol.16 (7), p.9060-9067
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2925039500
source American Chemical Society Journals
subjects Functional Inorganic Materials and Devices
title Graded-Band-Gap Zinc–Tin Oxide Thin-Film Transistors with a Vertically Stacked Structure for Wavelength-Selective Photodetection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graded-Band-Gap%20Zinc%E2%80%93Tin%20Oxide%20Thin-Film%20Transistors%20with%20a%20Vertically%20Stacked%20Structure%20for%20Wavelength-Selective%20Photodetection&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Teng,%20Jiahui&rft.date=2024-02-21&rft.volume=16&rft.issue=7&rft.spage=9060&rft.epage=9067&rft.pages=9060-9067&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c18737&rft_dat=%3Cproquest_cross%3E2925039500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925039500&rft_id=info:pmid/38336611&rfr_iscdi=true