Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity

Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine diglucona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2024-06, Vol.24 (6), p.e2300507-n/a
Hauptverfasser: Lima, Idglan Sá de, Silva, Albert Santos, Nascimento, Ariane Maria Silva Santos, Oliveira, Luís Humberto, Morais, Alan Ícaro Sousa, Barreto, Humberto Medeiros, Peña‐Garcia, Ramón, Cuevas, Maria Del Mar Orta, Argôlo Neto, Napoleão Martins, Osajima, Josy Anteveli, Muniz, Edvani Curti, Silva‐Filho, Edson Cavalcanti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e2300507
container_title Macromolecular bioscience
container_volume 24
creator Lima, Idglan Sá de
Silva, Albert Santos
Nascimento, Ariane Maria Silva Santos
Oliveira, Luís Humberto
Morais, Alan Ícaro Sousa
Barreto, Humberto Medeiros
Peña‐Garcia, Ramón
Cuevas, Maria Del Mar Orta
Argôlo Neto, Napoleão Martins
Osajima, Josy Anteveli
Muniz, Edvani Curti
Silva‐Filho, Edson Cavalcanti
description Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X‐ray diffraction, and a shift in the 1000 cm−1 band in the Fourier‐transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs. Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is produced, and release tests indicate a constant linear release over 72 h, while antimicrobial activity and no cytotoxicity.
doi_str_mv 10.1002/mabi.202300507
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925035510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067670998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-9d72367c69eef537b2cb4aaa28bd3943bc494ec4733a5b4b0d282de792138a2d3</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhq2qVflorz1WkXrhslt_JHF8XFYUkKgq9eNsje3ZrlESg-0sDf-Af01gYZG49DQjzTOPZvQS8onROaOUf-3A-DmnXFBaUfmG7LOa1bOKqertrm_kHjlI6ZJSJhvF35M90QjBy1ruk7tfY5_XmHwqoHfFcg0RbMbobyH70BdhVSwhJdhAcTp0xdnoYviLbbFIKVgPGV1x4_N6WmxDXOM_73yPj6qTDbTDTvITW4S0nSz67DtvYzAeJpPNfuPz-IG8W0Gb8ONTPSR_vp38Xp7NLn6cni8XFzMrpJAz5SQXtbS1QlxVQhpuTQkAvDFOqFIYW6oSbSmFgMqUhjrecIdScSYa4E4ckqOt9yqG6wFT1p1PFtsWegxD0lzxioqqYnRCv7xCL8MQ--k6LWgta0mVaiZqvqWmj1KKuNJX0XcQR82ofghJP4SkdyFNC5-ftIPp0O3w51QmQG2BG9_i-B-d_r44Pn-R3wNN05-X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067670998</pqid></control><display><type>article</type><title>Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lima, Idglan Sá de ; Silva, Albert Santos ; Nascimento, Ariane Maria Silva Santos ; Oliveira, Luís Humberto ; Morais, Alan Ícaro Sousa ; Barreto, Humberto Medeiros ; Peña‐Garcia, Ramón ; Cuevas, Maria Del Mar Orta ; Argôlo Neto, Napoleão Martins ; Osajima, Josy Anteveli ; Muniz, Edvani Curti ; Silva‐Filho, Edson Cavalcanti</creator><creatorcontrib>Lima, Idglan Sá de ; Silva, Albert Santos ; Nascimento, Ariane Maria Silva Santos ; Oliveira, Luís Humberto ; Morais, Alan Ícaro Sousa ; Barreto, Humberto Medeiros ; Peña‐Garcia, Ramón ; Cuevas, Maria Del Mar Orta ; Argôlo Neto, Napoleão Martins ; Osajima, Josy Anteveli ; Muniz, Edvani Curti ; Silva‐Filho, Edson Cavalcanti</creatorcontrib><description>Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X‐ray diffraction, and a shift in the 1000 cm−1 band in the Fourier‐transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs. Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is produced, and release tests indicate a constant linear release over 72 h, while antimicrobial activity and no cytotoxicity.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202300507</identifier><identifier>PMID: 38332467</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anti-Infective Agents - chemical synthesis ; Anti-Infective Agents - chemistry ; Anti-Infective Agents - pharmacology ; Antimicrobial activity ; antimicrobial activity assessment ; Antimicrobial agents ; Biocompatibility ; Biological activity ; biomaterial ; Calorimetry ; Candida albicans - drug effects ; Candida albicans - growth &amp; development ; Cassava ; Chlorhexidine ; Chlorhexidine - analogs &amp; derivatives ; Chlorhexidine - chemistry ; Chlorhexidine - pharmacology ; Copolymerization ; Crystallography ; Cytotoxicity ; Differential scanning calorimetry ; drug delivery ; Drug Liberation ; E coli ; Escherichia coli - drug effects ; Escherichia coli - growth &amp; development ; Fourier transforms ; Hydrogels ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Infrared radiation ; Infrared spectroscopy ; Manihot - chemistry ; Microbial Sensitivity Tests ; Photomicrographs ; Plant Gums - chemistry ; polysaccharide ; Porosity ; Spectroscopy, Fourier Transform Infrared ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - growth &amp; development ; Surgical implants ; Toxicity ; X-Ray Diffraction</subject><ispartof>Macromolecular bioscience, 2024-06, Vol.24 (6), p.e2300507-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-9d72367c69eef537b2cb4aaa28bd3943bc494ec4733a5b4b0d282de792138a2d3</citedby><cites>FETCH-LOGICAL-c3737-9d72367c69eef537b2cb4aaa28bd3943bc494ec4733a5b4b0d282de792138a2d3</cites><orcidid>0000-0003-0988-2970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202300507$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202300507$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38332467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lima, Idglan Sá de</creatorcontrib><creatorcontrib>Silva, Albert Santos</creatorcontrib><creatorcontrib>Nascimento, Ariane Maria Silva Santos</creatorcontrib><creatorcontrib>Oliveira, Luís Humberto</creatorcontrib><creatorcontrib>Morais, Alan Ícaro Sousa</creatorcontrib><creatorcontrib>Barreto, Humberto Medeiros</creatorcontrib><creatorcontrib>Peña‐Garcia, Ramón</creatorcontrib><creatorcontrib>Cuevas, Maria Del Mar Orta</creatorcontrib><creatorcontrib>Argôlo Neto, Napoleão Martins</creatorcontrib><creatorcontrib>Osajima, Josy Anteveli</creatorcontrib><creatorcontrib>Muniz, Edvani Curti</creatorcontrib><creatorcontrib>Silva‐Filho, Edson Cavalcanti</creatorcontrib><title>Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X‐ray diffraction, and a shift in the 1000 cm−1 band in the Fourier‐transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs. Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is produced, and release tests indicate a constant linear release over 72 h, while antimicrobial activity and no cytotoxicity.</description><subject>Anti-Infective Agents - chemical synthesis</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antimicrobial activity</subject><subject>antimicrobial activity assessment</subject><subject>Antimicrobial agents</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>biomaterial</subject><subject>Calorimetry</subject><subject>Candida albicans - drug effects</subject><subject>Candida albicans - growth &amp; development</subject><subject>Cassava</subject><subject>Chlorhexidine</subject><subject>Chlorhexidine - analogs &amp; derivatives</subject><subject>Chlorhexidine - chemistry</subject><subject>Chlorhexidine - pharmacology</subject><subject>Copolymerization</subject><subject>Crystallography</subject><subject>Cytotoxicity</subject><subject>Differential scanning calorimetry</subject><subject>drug delivery</subject><subject>Drug Liberation</subject><subject>E coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Fourier transforms</subject><subject>Hydrogels</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Infrared radiation</subject><subject>Infrared spectroscopy</subject><subject>Manihot - chemistry</subject><subject>Microbial Sensitivity Tests</subject><subject>Photomicrographs</subject><subject>Plant Gums - chemistry</subject><subject>polysaccharide</subject><subject>Porosity</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - growth &amp; development</subject><subject>Surgical implants</subject><subject>Toxicity</subject><subject>X-Ray Diffraction</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1P3DAQhq2qVflorz1WkXrhslt_JHF8XFYUkKgq9eNsje3ZrlESg-0sDf-Af01gYZG49DQjzTOPZvQS8onROaOUf-3A-DmnXFBaUfmG7LOa1bOKqertrm_kHjlI6ZJSJhvF35M90QjBy1ruk7tfY5_XmHwqoHfFcg0RbMbobyH70BdhVSwhJdhAcTp0xdnoYviLbbFIKVgPGV1x4_N6WmxDXOM_73yPj6qTDbTDTvITW4S0nSz67DtvYzAeJpPNfuPz-IG8W0Gb8ONTPSR_vp38Xp7NLn6cni8XFzMrpJAz5SQXtbS1QlxVQhpuTQkAvDFOqFIYW6oSbSmFgMqUhjrecIdScSYa4E4ckqOt9yqG6wFT1p1PFtsWegxD0lzxioqqYnRCv7xCL8MQ--k6LWgta0mVaiZqvqWmj1KKuNJX0XcQR82ofghJP4SkdyFNC5-ftIPp0O3w51QmQG2BG9_i-B-d_r44Pn-R3wNN05-X</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Lima, Idglan Sá de</creator><creator>Silva, Albert Santos</creator><creator>Nascimento, Ariane Maria Silva Santos</creator><creator>Oliveira, Luís Humberto</creator><creator>Morais, Alan Ícaro Sousa</creator><creator>Barreto, Humberto Medeiros</creator><creator>Peña‐Garcia, Ramón</creator><creator>Cuevas, Maria Del Mar Orta</creator><creator>Argôlo Neto, Napoleão Martins</creator><creator>Osajima, Josy Anteveli</creator><creator>Muniz, Edvani Curti</creator><creator>Silva‐Filho, Edson Cavalcanti</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0988-2970</orcidid></search><sort><creationdate>202406</creationdate><title>Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity</title><author>Lima, Idglan Sá de ; Silva, Albert Santos ; Nascimento, Ariane Maria Silva Santos ; Oliveira, Luís Humberto ; Morais, Alan Ícaro Sousa ; Barreto, Humberto Medeiros ; Peña‐Garcia, Ramón ; Cuevas, Maria Del Mar Orta ; Argôlo Neto, Napoleão Martins ; Osajima, Josy Anteveli ; Muniz, Edvani Curti ; Silva‐Filho, Edson Cavalcanti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-9d72367c69eef537b2cb4aaa28bd3943bc494ec4733a5b4b0d282de792138a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anti-Infective Agents - chemical synthesis</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antimicrobial activity</topic><topic>antimicrobial activity assessment</topic><topic>Antimicrobial agents</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>biomaterial</topic><topic>Calorimetry</topic><topic>Candida albicans - drug effects</topic><topic>Candida albicans - growth &amp; development</topic><topic>Cassava</topic><topic>Chlorhexidine</topic><topic>Chlorhexidine - analogs &amp; derivatives</topic><topic>Chlorhexidine - chemistry</topic><topic>Chlorhexidine - pharmacology</topic><topic>Copolymerization</topic><topic>Crystallography</topic><topic>Cytotoxicity</topic><topic>Differential scanning calorimetry</topic><topic>drug delivery</topic><topic>Drug Liberation</topic><topic>E coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Fourier transforms</topic><topic>Hydrogels</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Infrared radiation</topic><topic>Infrared spectroscopy</topic><topic>Manihot - chemistry</topic><topic>Microbial Sensitivity Tests</topic><topic>Photomicrographs</topic><topic>Plant Gums - chemistry</topic><topic>polysaccharide</topic><topic>Porosity</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - growth &amp; development</topic><topic>Surgical implants</topic><topic>Toxicity</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Idglan Sá de</creatorcontrib><creatorcontrib>Silva, Albert Santos</creatorcontrib><creatorcontrib>Nascimento, Ariane Maria Silva Santos</creatorcontrib><creatorcontrib>Oliveira, Luís Humberto</creatorcontrib><creatorcontrib>Morais, Alan Ícaro Sousa</creatorcontrib><creatorcontrib>Barreto, Humberto Medeiros</creatorcontrib><creatorcontrib>Peña‐Garcia, Ramón</creatorcontrib><creatorcontrib>Cuevas, Maria Del Mar Orta</creatorcontrib><creatorcontrib>Argôlo Neto, Napoleão Martins</creatorcontrib><creatorcontrib>Osajima, Josy Anteveli</creatorcontrib><creatorcontrib>Muniz, Edvani Curti</creatorcontrib><creatorcontrib>Silva‐Filho, Edson Cavalcanti</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Idglan Sá de</au><au>Silva, Albert Santos</au><au>Nascimento, Ariane Maria Silva Santos</au><au>Oliveira, Luís Humberto</au><au>Morais, Alan Ícaro Sousa</au><au>Barreto, Humberto Medeiros</au><au>Peña‐Garcia, Ramón</au><au>Cuevas, Maria Del Mar Orta</au><au>Argôlo Neto, Napoleão Martins</au><au>Osajima, Josy Anteveli</au><au>Muniz, Edvani Curti</au><au>Silva‐Filho, Edson Cavalcanti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2024-06</date><risdate>2024</risdate><volume>24</volume><issue>6</issue><spage>e2300507</spage><epage>n/a</epage><pages>e2300507-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X‐ray diffraction, and a shift in the 1000 cm−1 band in the Fourier‐transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs. Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is produced, and release tests indicate a constant linear release over 72 h, while antimicrobial activity and no cytotoxicity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38332467</pmid><doi>10.1002/mabi.202300507</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0988-2970</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2024-06, Vol.24 (6), p.e2300507-n/a
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_2925035510
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Anti-Infective Agents - chemical synthesis
Anti-Infective Agents - chemistry
Anti-Infective Agents - pharmacology
Antimicrobial activity
antimicrobial activity assessment
Antimicrobial agents
Biocompatibility
Biological activity
biomaterial
Calorimetry
Candida albicans - drug effects
Candida albicans - growth & development
Cassava
Chlorhexidine
Chlorhexidine - analogs & derivatives
Chlorhexidine - chemistry
Chlorhexidine - pharmacology
Copolymerization
Crystallography
Cytotoxicity
Differential scanning calorimetry
drug delivery
Drug Liberation
E coli
Escherichia coli - drug effects
Escherichia coli - growth & development
Fourier transforms
Hydrogels
Hydrogels - chemical synthesis
Hydrogels - chemistry
Hydrogels - pharmacology
Infrared radiation
Infrared spectroscopy
Manihot - chemistry
Microbial Sensitivity Tests
Photomicrographs
Plant Gums - chemistry
polysaccharide
Porosity
Spectroscopy, Fourier Transform Infrared
Staphylococcus aureus - drug effects
Staphylococcus aureus - growth & development
Surgical implants
Toxicity
X-Ray Diffraction
title Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20Cassava%20Gum%20Hydrogel%20Associated%20with%20Chlorhexidine%20and%20Evaluation%20of%20Release%20and%20Antimicrobial%20Activity&rft.jtitle=Macromolecular%20bioscience&rft.au=Lima,%20Idglan%20S%C3%A1%20de&rft.date=2024-06&rft.volume=24&rft.issue=6&rft.spage=e2300507&rft.epage=n/a&rft.pages=e2300507-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202300507&rft_dat=%3Cproquest_cross%3E3067670998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067670998&rft_id=info:pmid/38332467&rfr_iscdi=true