Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity
Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine diglucona...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2024-06, Vol.24 (6), p.e2300507-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e2300507 |
container_title | Macromolecular bioscience |
container_volume | 24 |
creator | Lima, Idglan Sá de Silva, Albert Santos Nascimento, Ariane Maria Silva Santos Oliveira, Luís Humberto Morais, Alan Ícaro Sousa Barreto, Humberto Medeiros Peña‐Garcia, Ramón Cuevas, Maria Del Mar Orta Argôlo Neto, Napoleão Martins Osajima, Josy Anteveli Muniz, Edvani Curti Silva‐Filho, Edson Cavalcanti |
description | Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X‐ray diffraction, and a shift in the 1000 cm−1 band in the Fourier‐transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs.
Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is produced, and release tests indicate a constant linear release over 72 h, while antimicrobial activity and no cytotoxicity. |
doi_str_mv | 10.1002/mabi.202300507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925035510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067670998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-9d72367c69eef537b2cb4aaa28bd3943bc494ec4733a5b4b0d282de792138a2d3</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhq2qVflorz1WkXrhslt_JHF8XFYUkKgq9eNsje3ZrlESg-0sDf-Af01gYZG49DQjzTOPZvQS8onROaOUf-3A-DmnXFBaUfmG7LOa1bOKqertrm_kHjlI6ZJSJhvF35M90QjBy1ruk7tfY5_XmHwqoHfFcg0RbMbobyH70BdhVSwhJdhAcTp0xdnoYviLbbFIKVgPGV1x4_N6WmxDXOM_73yPj6qTDbTDTvITW4S0nSz67DtvYzAeJpPNfuPz-IG8W0Gb8ONTPSR_vp38Xp7NLn6cni8XFzMrpJAz5SQXtbS1QlxVQhpuTQkAvDFOqFIYW6oSbSmFgMqUhjrecIdScSYa4E4ckqOt9yqG6wFT1p1PFtsWegxD0lzxioqqYnRCv7xCL8MQ--k6LWgta0mVaiZqvqWmj1KKuNJX0XcQR82ofghJP4SkdyFNC5-ftIPp0O3w51QmQG2BG9_i-B-d_r44Pn-R3wNN05-X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067670998</pqid></control><display><type>article</type><title>Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lima, Idglan Sá de ; Silva, Albert Santos ; Nascimento, Ariane Maria Silva Santos ; Oliveira, Luís Humberto ; Morais, Alan Ícaro Sousa ; Barreto, Humberto Medeiros ; Peña‐Garcia, Ramón ; Cuevas, Maria Del Mar Orta ; Argôlo Neto, Napoleão Martins ; Osajima, Josy Anteveli ; Muniz, Edvani Curti ; Silva‐Filho, Edson Cavalcanti</creator><creatorcontrib>Lima, Idglan Sá de ; Silva, Albert Santos ; Nascimento, Ariane Maria Silva Santos ; Oliveira, Luís Humberto ; Morais, Alan Ícaro Sousa ; Barreto, Humberto Medeiros ; Peña‐Garcia, Ramón ; Cuevas, Maria Del Mar Orta ; Argôlo Neto, Napoleão Martins ; Osajima, Josy Anteveli ; Muniz, Edvani Curti ; Silva‐Filho, Edson Cavalcanti</creatorcontrib><description>Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X‐ray diffraction, and a shift in the 1000 cm−1 band in the Fourier‐transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs.
Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is produced, and release tests indicate a constant linear release over 72 h, while antimicrobial activity and no cytotoxicity.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202300507</identifier><identifier>PMID: 38332467</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anti-Infective Agents - chemical synthesis ; Anti-Infective Agents - chemistry ; Anti-Infective Agents - pharmacology ; Antimicrobial activity ; antimicrobial activity assessment ; Antimicrobial agents ; Biocompatibility ; Biological activity ; biomaterial ; Calorimetry ; Candida albicans - drug effects ; Candida albicans - growth & development ; Cassava ; Chlorhexidine ; Chlorhexidine - analogs & derivatives ; Chlorhexidine - chemistry ; Chlorhexidine - pharmacology ; Copolymerization ; Crystallography ; Cytotoxicity ; Differential scanning calorimetry ; drug delivery ; Drug Liberation ; E coli ; Escherichia coli - drug effects ; Escherichia coli - growth & development ; Fourier transforms ; Hydrogels ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Infrared radiation ; Infrared spectroscopy ; Manihot - chemistry ; Microbial Sensitivity Tests ; Photomicrographs ; Plant Gums - chemistry ; polysaccharide ; Porosity ; Spectroscopy, Fourier Transform Infrared ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - growth & development ; Surgical implants ; Toxicity ; X-Ray Diffraction</subject><ispartof>Macromolecular bioscience, 2024-06, Vol.24 (6), p.e2300507-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-9d72367c69eef537b2cb4aaa28bd3943bc494ec4733a5b4b0d282de792138a2d3</citedby><cites>FETCH-LOGICAL-c3737-9d72367c69eef537b2cb4aaa28bd3943bc494ec4733a5b4b0d282de792138a2d3</cites><orcidid>0000-0003-0988-2970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202300507$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202300507$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38332467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lima, Idglan Sá de</creatorcontrib><creatorcontrib>Silva, Albert Santos</creatorcontrib><creatorcontrib>Nascimento, Ariane Maria Silva Santos</creatorcontrib><creatorcontrib>Oliveira, Luís Humberto</creatorcontrib><creatorcontrib>Morais, Alan Ícaro Sousa</creatorcontrib><creatorcontrib>Barreto, Humberto Medeiros</creatorcontrib><creatorcontrib>Peña‐Garcia, Ramón</creatorcontrib><creatorcontrib>Cuevas, Maria Del Mar Orta</creatorcontrib><creatorcontrib>Argôlo Neto, Napoleão Martins</creatorcontrib><creatorcontrib>Osajima, Josy Anteveli</creatorcontrib><creatorcontrib>Muniz, Edvani Curti</creatorcontrib><creatorcontrib>Silva‐Filho, Edson Cavalcanti</creatorcontrib><title>Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X‐ray diffraction, and a shift in the 1000 cm−1 band in the Fourier‐transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs.
Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is produced, and release tests indicate a constant linear release over 72 h, while antimicrobial activity and no cytotoxicity.</description><subject>Anti-Infective Agents - chemical synthesis</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antimicrobial activity</subject><subject>antimicrobial activity assessment</subject><subject>Antimicrobial agents</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>biomaterial</subject><subject>Calorimetry</subject><subject>Candida albicans - drug effects</subject><subject>Candida albicans - growth & development</subject><subject>Cassava</subject><subject>Chlorhexidine</subject><subject>Chlorhexidine - analogs & derivatives</subject><subject>Chlorhexidine - chemistry</subject><subject>Chlorhexidine - pharmacology</subject><subject>Copolymerization</subject><subject>Crystallography</subject><subject>Cytotoxicity</subject><subject>Differential scanning calorimetry</subject><subject>drug delivery</subject><subject>Drug Liberation</subject><subject>E coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - growth & development</subject><subject>Fourier transforms</subject><subject>Hydrogels</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Infrared radiation</subject><subject>Infrared spectroscopy</subject><subject>Manihot - chemistry</subject><subject>Microbial Sensitivity Tests</subject><subject>Photomicrographs</subject><subject>Plant Gums - chemistry</subject><subject>polysaccharide</subject><subject>Porosity</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - growth & development</subject><subject>Surgical implants</subject><subject>Toxicity</subject><subject>X-Ray Diffraction</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1P3DAQhq2qVflorz1WkXrhslt_JHF8XFYUkKgq9eNsje3ZrlESg-0sDf-Af01gYZG49DQjzTOPZvQS8onROaOUf-3A-DmnXFBaUfmG7LOa1bOKqertrm_kHjlI6ZJSJhvF35M90QjBy1ruk7tfY5_XmHwqoHfFcg0RbMbobyH70BdhVSwhJdhAcTp0xdnoYviLbbFIKVgPGV1x4_N6WmxDXOM_73yPj6qTDbTDTvITW4S0nSz67DtvYzAeJpPNfuPz-IG8W0Gb8ONTPSR_vp38Xp7NLn6cni8XFzMrpJAz5SQXtbS1QlxVQhpuTQkAvDFOqFIYW6oSbSmFgMqUhjrecIdScSYa4E4ckqOt9yqG6wFT1p1PFtsWegxD0lzxioqqYnRCv7xCL8MQ--k6LWgta0mVaiZqvqWmj1KKuNJX0XcQR82ofghJP4SkdyFNC5-ftIPp0O3w51QmQG2BG9_i-B-d_r44Pn-R3wNN05-X</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Lima, Idglan Sá de</creator><creator>Silva, Albert Santos</creator><creator>Nascimento, Ariane Maria Silva Santos</creator><creator>Oliveira, Luís Humberto</creator><creator>Morais, Alan Ícaro Sousa</creator><creator>Barreto, Humberto Medeiros</creator><creator>Peña‐Garcia, Ramón</creator><creator>Cuevas, Maria Del Mar Orta</creator><creator>Argôlo Neto, Napoleão Martins</creator><creator>Osajima, Josy Anteveli</creator><creator>Muniz, Edvani Curti</creator><creator>Silva‐Filho, Edson Cavalcanti</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0988-2970</orcidid></search><sort><creationdate>202406</creationdate><title>Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity</title><author>Lima, Idglan Sá de ; Silva, Albert Santos ; Nascimento, Ariane Maria Silva Santos ; Oliveira, Luís Humberto ; Morais, Alan Ícaro Sousa ; Barreto, Humberto Medeiros ; Peña‐Garcia, Ramón ; Cuevas, Maria Del Mar Orta ; Argôlo Neto, Napoleão Martins ; Osajima, Josy Anteveli ; Muniz, Edvani Curti ; Silva‐Filho, Edson Cavalcanti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-9d72367c69eef537b2cb4aaa28bd3943bc494ec4733a5b4b0d282de792138a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anti-Infective Agents - chemical synthesis</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antimicrobial activity</topic><topic>antimicrobial activity assessment</topic><topic>Antimicrobial agents</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>biomaterial</topic><topic>Calorimetry</topic><topic>Candida albicans - drug effects</topic><topic>Candida albicans - growth & development</topic><topic>Cassava</topic><topic>Chlorhexidine</topic><topic>Chlorhexidine - analogs & derivatives</topic><topic>Chlorhexidine - chemistry</topic><topic>Chlorhexidine - pharmacology</topic><topic>Copolymerization</topic><topic>Crystallography</topic><topic>Cytotoxicity</topic><topic>Differential scanning calorimetry</topic><topic>drug delivery</topic><topic>Drug Liberation</topic><topic>E coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - growth & development</topic><topic>Fourier transforms</topic><topic>Hydrogels</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Infrared radiation</topic><topic>Infrared spectroscopy</topic><topic>Manihot - chemistry</topic><topic>Microbial Sensitivity Tests</topic><topic>Photomicrographs</topic><topic>Plant Gums - chemistry</topic><topic>polysaccharide</topic><topic>Porosity</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - growth & development</topic><topic>Surgical implants</topic><topic>Toxicity</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Idglan Sá de</creatorcontrib><creatorcontrib>Silva, Albert Santos</creatorcontrib><creatorcontrib>Nascimento, Ariane Maria Silva Santos</creatorcontrib><creatorcontrib>Oliveira, Luís Humberto</creatorcontrib><creatorcontrib>Morais, Alan Ícaro Sousa</creatorcontrib><creatorcontrib>Barreto, Humberto Medeiros</creatorcontrib><creatorcontrib>Peña‐Garcia, Ramón</creatorcontrib><creatorcontrib>Cuevas, Maria Del Mar Orta</creatorcontrib><creatorcontrib>Argôlo Neto, Napoleão Martins</creatorcontrib><creatorcontrib>Osajima, Josy Anteveli</creatorcontrib><creatorcontrib>Muniz, Edvani Curti</creatorcontrib><creatorcontrib>Silva‐Filho, Edson Cavalcanti</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Idglan Sá de</au><au>Silva, Albert Santos</au><au>Nascimento, Ariane Maria Silva Santos</au><au>Oliveira, Luís Humberto</au><au>Morais, Alan Ícaro Sousa</au><au>Barreto, Humberto Medeiros</au><au>Peña‐Garcia, Ramón</au><au>Cuevas, Maria Del Mar Orta</au><au>Argôlo Neto, Napoleão Martins</au><au>Osajima, Josy Anteveli</au><au>Muniz, Edvani Curti</au><au>Silva‐Filho, Edson Cavalcanti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2024-06</date><risdate>2024</risdate><volume>24</volume><issue>6</issue><spage>e2300507</spage><epage>n/a</epage><pages>e2300507-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X‐ray diffraction, and a shift in the 1000 cm−1 band in the Fourier‐transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs.
Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is produced, and release tests indicate a constant linear release over 72 h, while antimicrobial activity and no cytotoxicity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38332467</pmid><doi>10.1002/mabi.202300507</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0988-2970</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2024-06, Vol.24 (6), p.e2300507-n/a |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_miscellaneous_2925035510 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Anti-Infective Agents - chemical synthesis Anti-Infective Agents - chemistry Anti-Infective Agents - pharmacology Antimicrobial activity antimicrobial activity assessment Antimicrobial agents Biocompatibility Biological activity biomaterial Calorimetry Candida albicans - drug effects Candida albicans - growth & development Cassava Chlorhexidine Chlorhexidine - analogs & derivatives Chlorhexidine - chemistry Chlorhexidine - pharmacology Copolymerization Crystallography Cytotoxicity Differential scanning calorimetry drug delivery Drug Liberation E coli Escherichia coli - drug effects Escherichia coli - growth & development Fourier transforms Hydrogels Hydrogels - chemical synthesis Hydrogels - chemistry Hydrogels - pharmacology Infrared radiation Infrared spectroscopy Manihot - chemistry Microbial Sensitivity Tests Photomicrographs Plant Gums - chemistry polysaccharide Porosity Spectroscopy, Fourier Transform Infrared Staphylococcus aureus - drug effects Staphylococcus aureus - growth & development Surgical implants Toxicity X-Ray Diffraction |
title | Synthesis and Characterization of Cassava Gum Hydrogel Associated with Chlorhexidine and Evaluation of Release and Antimicrobial Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20Cassava%20Gum%20Hydrogel%20Associated%20with%20Chlorhexidine%20and%20Evaluation%20of%20Release%20and%20Antimicrobial%20Activity&rft.jtitle=Macromolecular%20bioscience&rft.au=Lima,%20Idglan%20S%C3%A1%20de&rft.date=2024-06&rft.volume=24&rft.issue=6&rft.spage=e2300507&rft.epage=n/a&rft.pages=e2300507-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202300507&rft_dat=%3Cproquest_cross%3E3067670998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067670998&rft_id=info:pmid/38332467&rfr_iscdi=true |