Hybrid ultrasound and photoacoustic contrast agent designs combining metal phthalocyanines and PBCA microbubbles
Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applica...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-03, Vol.12 (1), p.2511-2522 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2522 |
---|---|
container_issue | 1 |
container_start_page | 2511 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 12 |
creator | Barmin, Roman A Moosavifar, MirJavad Zhang, Rui Rütten, Stephan Thoröe-Boveleth, Sven Rama, Elena Ojha, Tarun Kiessling, Fabian Lammers, Twan Pallares, Roger M |
description | Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by
in vitro
imaging in serum and whole blood, and
ex vivo
imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.
The combination of polymeric PBCA microbubbles and highly hydrophobic metal phthalocyanines provides bimodal ultrasound/photoacoustic imaging capabilities based on the high encapsulation efficiencies and tunable optical properties of the latter. |
doi_str_mv | 10.1039/d3tb02950f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925034903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925034903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-8a134ff4e1a99d6e0b873eb8369ea43a7f77947373b662a1d554389288dc3c003</originalsourceid><addsrcrecordid>eNpdktFLHDEQxoNUVKwvfVcW-lIKV5Od7CZ5Er3WKgj2wULfQpLN3kV2kzPJFu6_b87Ts20gJMz88jEzXxD6QPAXgkGcd5A1rkWD-z10VOMGz1hD-LvdHf86RCcpPeKyOGk50AN0CByAsoYfodXNWkfXVdOQo0ph8l2lyl4tQw7KhCllZyoT_CabK7WwPledTW7hUwmP2nnnF9VosxrKo7xUQzBrVYI2PQv9uJpfVqMzMehJ68Gm92i_V0OyJy_nMfp5_e1hfjO7u_9-O7-8mxngPM-4IkD7nlqihOhaizVnYDWHVlhFQbGeMUEZMNBtWyvSNQ0FLmrOOwMGYzhGF1vd1aRH2xm7aWGQq-hGFdcyKCf_zXi3lIvwWxIsSNtAWxQ-vSjE8DTZlOXokrHDoLwtg5G1qBsMVGAo6Mf_0McwRV_6KxSwFvOa1oX6vKXKNFKKtt9VQ7DcmCm_wsPVs5nXBT77u_4d-mpdAU63QExml337DfAHypilhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937608242</pqid></control><display><type>article</type><title>Hybrid ultrasound and photoacoustic contrast agent designs combining metal phthalocyanines and PBCA microbubbles</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Barmin, Roman A ; Moosavifar, MirJavad ; Zhang, Rui ; Rütten, Stephan ; Thoröe-Boveleth, Sven ; Rama, Elena ; Ojha, Tarun ; Kiessling, Fabian ; Lammers, Twan ; Pallares, Roger M</creator><creatorcontrib>Barmin, Roman A ; Moosavifar, MirJavad ; Zhang, Rui ; Rütten, Stephan ; Thoröe-Boveleth, Sven ; Rama, Elena ; Ojha, Tarun ; Kiessling, Fabian ; Lammers, Twan ; Pallares, Roger M</creatorcontrib><description>Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by
in vitro
imaging in serum and whole blood, and
ex vivo
imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.
The combination of polymeric PBCA microbubbles and highly hydrophobic metal phthalocyanines provides bimodal ultrasound/photoacoustic imaging capabilities based on the high encapsulation efficiencies and tunable optical properties of the latter.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d3tb02950f</identifier><identifier>PMID: 38334758</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Biomedical materials ; Chemistry ; Chromophores ; Cobalt ; Contrast agents ; Contrast Media ; Encapsulation ; Hydrophobicity ; Image acquisition ; Medical imaging ; Metal phthalocyanines ; Metals ; Mice ; Microbubbles ; Multimodal Imaging ; Optical properties ; Penetration depth ; Polymers - chemistry ; Structure-function relationships ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2024-03, Vol.12 (1), p.2511-2522</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-8a134ff4e1a99d6e0b873eb8369ea43a7f77947373b662a1d554389288dc3c003</cites><orcidid>0000-0002-1090-6805 ; 0000-0001-7423-8706 ; 0000-0003-3196-5457 ; 0000-0002-6814-636X ; 0000-0001-8105-7081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38334758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barmin, Roman A</creatorcontrib><creatorcontrib>Moosavifar, MirJavad</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Rütten, Stephan</creatorcontrib><creatorcontrib>Thoröe-Boveleth, Sven</creatorcontrib><creatorcontrib>Rama, Elena</creatorcontrib><creatorcontrib>Ojha, Tarun</creatorcontrib><creatorcontrib>Kiessling, Fabian</creatorcontrib><creatorcontrib>Lammers, Twan</creatorcontrib><creatorcontrib>Pallares, Roger M</creatorcontrib><title>Hybrid ultrasound and photoacoustic contrast agent designs combining metal phthalocyanines and PBCA microbubbles</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by
in vitro
imaging in serum and whole blood, and
ex vivo
imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.
The combination of polymeric PBCA microbubbles and highly hydrophobic metal phthalocyanines provides bimodal ultrasound/photoacoustic imaging capabilities based on the high encapsulation efficiencies and tunable optical properties of the latter.</description><subject>Animals</subject><subject>Biomedical materials</subject><subject>Chemistry</subject><subject>Chromophores</subject><subject>Cobalt</subject><subject>Contrast agents</subject><subject>Contrast Media</subject><subject>Encapsulation</subject><subject>Hydrophobicity</subject><subject>Image acquisition</subject><subject>Medical imaging</subject><subject>Metal phthalocyanines</subject><subject>Metals</subject><subject>Mice</subject><subject>Microbubbles</subject><subject>Multimodal Imaging</subject><subject>Optical properties</subject><subject>Penetration depth</subject><subject>Polymers - chemistry</subject><subject>Structure-function relationships</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdktFLHDEQxoNUVKwvfVcW-lIKV5Od7CZ5Er3WKgj2wULfQpLN3kV2kzPJFu6_b87Ts20gJMz88jEzXxD6QPAXgkGcd5A1rkWD-z10VOMGz1hD-LvdHf86RCcpPeKyOGk50AN0CByAsoYfodXNWkfXVdOQo0ph8l2lyl4tQw7KhCllZyoT_CabK7WwPledTW7hUwmP2nnnF9VosxrKo7xUQzBrVYI2PQv9uJpfVqMzMehJ68Gm92i_V0OyJy_nMfp5_e1hfjO7u_9-O7-8mxngPM-4IkD7nlqihOhaizVnYDWHVlhFQbGeMUEZMNBtWyvSNQ0FLmrOOwMGYzhGF1vd1aRH2xm7aWGQq-hGFdcyKCf_zXi3lIvwWxIsSNtAWxQ-vSjE8DTZlOXokrHDoLwtg5G1qBsMVGAo6Mf_0McwRV_6KxSwFvOa1oX6vKXKNFKKtt9VQ7DcmCm_wsPVs5nXBT77u_4d-mpdAU63QExml337DfAHypilhA</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Barmin, Roman A</creator><creator>Moosavifar, MirJavad</creator><creator>Zhang, Rui</creator><creator>Rütten, Stephan</creator><creator>Thoröe-Boveleth, Sven</creator><creator>Rama, Elena</creator><creator>Ojha, Tarun</creator><creator>Kiessling, Fabian</creator><creator>Lammers, Twan</creator><creator>Pallares, Roger M</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1090-6805</orcidid><orcidid>https://orcid.org/0000-0001-7423-8706</orcidid><orcidid>https://orcid.org/0000-0003-3196-5457</orcidid><orcidid>https://orcid.org/0000-0002-6814-636X</orcidid><orcidid>https://orcid.org/0000-0001-8105-7081</orcidid></search><sort><creationdate>20240306</creationdate><title>Hybrid ultrasound and photoacoustic contrast agent designs combining metal phthalocyanines and PBCA microbubbles</title><author>Barmin, Roman A ; Moosavifar, MirJavad ; Zhang, Rui ; Rütten, Stephan ; Thoröe-Boveleth, Sven ; Rama, Elena ; Ojha, Tarun ; Kiessling, Fabian ; Lammers, Twan ; Pallares, Roger M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-8a134ff4e1a99d6e0b873eb8369ea43a7f77947373b662a1d554389288dc3c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biomedical materials</topic><topic>Chemistry</topic><topic>Chromophores</topic><topic>Cobalt</topic><topic>Contrast agents</topic><topic>Contrast Media</topic><topic>Encapsulation</topic><topic>Hydrophobicity</topic><topic>Image acquisition</topic><topic>Medical imaging</topic><topic>Metal phthalocyanines</topic><topic>Metals</topic><topic>Mice</topic><topic>Microbubbles</topic><topic>Multimodal Imaging</topic><topic>Optical properties</topic><topic>Penetration depth</topic><topic>Polymers - chemistry</topic><topic>Structure-function relationships</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barmin, Roman A</creatorcontrib><creatorcontrib>Moosavifar, MirJavad</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Rütten, Stephan</creatorcontrib><creatorcontrib>Thoröe-Boveleth, Sven</creatorcontrib><creatorcontrib>Rama, Elena</creatorcontrib><creatorcontrib>Ojha, Tarun</creatorcontrib><creatorcontrib>Kiessling, Fabian</creatorcontrib><creatorcontrib>Lammers, Twan</creatorcontrib><creatorcontrib>Pallares, Roger M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barmin, Roman A</au><au>Moosavifar, MirJavad</au><au>Zhang, Rui</au><au>Rütten, Stephan</au><au>Thoröe-Boveleth, Sven</au><au>Rama, Elena</au><au>Ojha, Tarun</au><au>Kiessling, Fabian</au><au>Lammers, Twan</au><au>Pallares, Roger M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid ultrasound and photoacoustic contrast agent designs combining metal phthalocyanines and PBCA microbubbles</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2024-03-06</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>2511</spage><epage>2522</epage><pages>2511-2522</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by
in vitro
imaging in serum and whole blood, and
ex vivo
imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.
The combination of polymeric PBCA microbubbles and highly hydrophobic metal phthalocyanines provides bimodal ultrasound/photoacoustic imaging capabilities based on the high encapsulation efficiencies and tunable optical properties of the latter.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38334758</pmid><doi>10.1039/d3tb02950f</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1090-6805</orcidid><orcidid>https://orcid.org/0000-0001-7423-8706</orcidid><orcidid>https://orcid.org/0000-0003-3196-5457</orcidid><orcidid>https://orcid.org/0000-0002-6814-636X</orcidid><orcidid>https://orcid.org/0000-0001-8105-7081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2024-03, Vol.12 (1), p.2511-2522 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_proquest_miscellaneous_2925034903 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Animals Biomedical materials Chemistry Chromophores Cobalt Contrast agents Contrast Media Encapsulation Hydrophobicity Image acquisition Medical imaging Metal phthalocyanines Metals Mice Microbubbles Multimodal Imaging Optical properties Penetration depth Polymers - chemistry Structure-function relationships Ultrasonic imaging Ultrasonography - methods Ultrasound |
title | Hybrid ultrasound and photoacoustic contrast agent designs combining metal phthalocyanines and PBCA microbubbles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20ultrasound%20and%20photoacoustic%20contrast%20agent%20designs%20combining%20metal%20phthalocyanines%20and%20PBCA%20microbubbles&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Barmin,%20Roman%20A&rft.date=2024-03-06&rft.volume=12&rft.issue=1&rft.spage=2511&rft.epage=2522&rft.pages=2511-2522&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d3tb02950f&rft_dat=%3Cproquest_pubme%3E2925034903%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937608242&rft_id=info:pmid/38334758&rfr_iscdi=true |