On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy-Polymer Composites

The growth of cracks between plies, i.e., delamination, in continuous fibre polymer matrix composites under cyclic-fatigue loading in operational aircraft structures has always been a very important factor, which has the potential to significantly decrease the service life of such structures. Whilst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-02, Vol.16 (3), p.435
Hauptverfasser: Michel, Silvain, Murphy, Neal, Kinloch, Anthony J, Jones, Rhys
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 435
container_title Polymers
container_volume 16
creator Michel, Silvain
Murphy, Neal
Kinloch, Anthony J
Jones, Rhys
description The growth of cracks between plies, i.e., delamination, in continuous fibre polymer matrix composites under cyclic-fatigue loading in operational aircraft structures has always been a very important factor, which has the potential to significantly decrease the service life of such structures. Whilst current designs are based on a 'no growth' design philosophy, delamination growth can nevertheless arise in operational aircraft and compromise structural integrity. To this end, the present paper outlines experimental and data reduction procedures for continuous fibre polymer matrix composites, based on a linear elastic fracture mechanics approach, which are capable of (a) determining and computing the fatigue crack growth (FCG) rate, / , curve; (b) providing two different methods for determining the mandated worst-case FCG rate curve; and (c) calculating the fatigue threshold limit, below which no significant FCG occurs. Two data reduction procedures are proposed, which are based upon the Hartman-Schijve approach and a novel simple-scaling approach. These two different methodologies provide similar worst-case curves, and both provide an upper bound for all the experimental data. The calculated FCG threshold values as determined from both methodologies are also in very good agreement.
doi_str_mv 10.3390/polym16030435
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925034821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782092496</galeid><sourcerecordid>A782092496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-a5586adf55b86d35707e0f605a549edaa07dc77288893fed2851acf9eee0e7543</originalsourceid><addsrcrecordid>eNpdkUFP3DAQha2KqiDKsdcqEhcuBsdjx_YRRSythESF2nPkdSbUkMTBTgT77-toaQWdOYw1_mb07EfIl5KdAxh2MYV-N5QVAyZAfiBHnCmgAip28OZ8SE5SemA5hKyqUn0ih6ABFHBxRO5ux6Leud47urGzv1-wqKN1j8V1DM_z78Lnaxu3YaQbv41I79CPXYgO2-JqCi87-mOVgLGowzCF5GdMn8nHzvYJT17rMfm1ufpZf6M3t9ff68sb6sCYmVopdWXbTsqtrlqQiilkXcWklcJgay1TrVOKa60NdNhyLUvrOoOIDJUUcEzO9nunGJ4WTHMz-OSw7-2IYUkNN1wyEJqXGT39D30ISxyzupUCo7QQVabO99S97bFZ3znnr8jZ4uBdGLHzuX-pNGeGC7MO0P2AiyGliF0zRT_YuGtK1qwGNe8MyvzXVxnLdsD2H_3XDvgDyXWKhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923978446</pqid></control><display><type>article</type><title>On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy-Polymer Composites</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Michel, Silvain ; Murphy, Neal ; Kinloch, Anthony J ; Jones, Rhys</creator><creatorcontrib>Michel, Silvain ; Murphy, Neal ; Kinloch, Anthony J ; Jones, Rhys</creatorcontrib><description>The growth of cracks between plies, i.e., delamination, in continuous fibre polymer matrix composites under cyclic-fatigue loading in operational aircraft structures has always been a very important factor, which has the potential to significantly decrease the service life of such structures. Whilst current designs are based on a 'no growth' design philosophy, delamination growth can nevertheless arise in operational aircraft and compromise structural integrity. To this end, the present paper outlines experimental and data reduction procedures for continuous fibre polymer matrix composites, based on a linear elastic fracture mechanics approach, which are capable of (a) determining and computing the fatigue crack growth (FCG) rate, / , curve; (b) providing two different methods for determining the mandated worst-case FCG rate curve; and (c) calculating the fatigue threshold limit, below which no significant FCG occurs. Two data reduction procedures are proposed, which are based upon the Hartman-Schijve approach and a novel simple-scaling approach. These two different methodologies provide similar worst-case curves, and both provide an upper bound for all the experimental data. The calculated FCG threshold values as determined from both methodologies are also in very good agreement.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16030435</identifier><identifier>PMID: 38337324</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aging aircraft ; Aircraft ; Aircraft structures ; Analysis ; Carbon ; Carbon fiber reinforced plastics ; Carbon fibers ; Carbon-epoxy composites ; Composite materials ; Continuous fiber composites ; Crack propagation ; Data reduction ; Delamination ; Epoxy resins ; Fatigue ; Fatigue cracks ; Fatigue failure ; Fatigue testing machines ; Fiber reinforced polymers ; Fracture mechanics ; Laboratories ; Layers ; Linear elastic fracture mechanics ; Materials ; Materials fatigue ; Mathematical analysis ; Mechanical properties ; Polymer matrix composites ; Polymeric composites ; Polymers ; Service life ; Structural integrity ; Test methods ; Upper bounds</subject><ispartof>Polymers, 2024-02, Vol.16 (3), p.435</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-a5586adf55b86d35707e0f605a549edaa07dc77288893fed2851acf9eee0e7543</citedby><cites>FETCH-LOGICAL-c399t-a5586adf55b86d35707e0f605a549edaa07dc77288893fed2851acf9eee0e7543</cites><orcidid>0000-0002-3337-2420 ; 0000-0002-8752-7184 ; 0000-0003-3197-2796 ; 0000-0002-7236-0932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38337324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michel, Silvain</creatorcontrib><creatorcontrib>Murphy, Neal</creatorcontrib><creatorcontrib>Kinloch, Anthony J</creatorcontrib><creatorcontrib>Jones, Rhys</creatorcontrib><title>On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy-Polymer Composites</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The growth of cracks between plies, i.e., delamination, in continuous fibre polymer matrix composites under cyclic-fatigue loading in operational aircraft structures has always been a very important factor, which has the potential to significantly decrease the service life of such structures. Whilst current designs are based on a 'no growth' design philosophy, delamination growth can nevertheless arise in operational aircraft and compromise structural integrity. To this end, the present paper outlines experimental and data reduction procedures for continuous fibre polymer matrix composites, based on a linear elastic fracture mechanics approach, which are capable of (a) determining and computing the fatigue crack growth (FCG) rate, / , curve; (b) providing two different methods for determining the mandated worst-case FCG rate curve; and (c) calculating the fatigue threshold limit, below which no significant FCG occurs. Two data reduction procedures are proposed, which are based upon the Hartman-Schijve approach and a novel simple-scaling approach. These two different methodologies provide similar worst-case curves, and both provide an upper bound for all the experimental data. The calculated FCG threshold values as determined from both methodologies are also in very good agreement.</description><subject>Aging aircraft</subject><subject>Aircraft</subject><subject>Aircraft structures</subject><subject>Analysis</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Carbon-epoxy composites</subject><subject>Composite materials</subject><subject>Continuous fiber composites</subject><subject>Crack propagation</subject><subject>Data reduction</subject><subject>Delamination</subject><subject>Epoxy resins</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue testing machines</subject><subject>Fiber reinforced polymers</subject><subject>Fracture mechanics</subject><subject>Laboratories</subject><subject>Layers</subject><subject>Linear elastic fracture mechanics</subject><subject>Materials</subject><subject>Materials fatigue</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Polymer matrix composites</subject><subject>Polymeric composites</subject><subject>Polymers</subject><subject>Service life</subject><subject>Structural integrity</subject><subject>Test methods</subject><subject>Upper bounds</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUFP3DAQha2KqiDKsdcqEhcuBsdjx_YRRSythESF2nPkdSbUkMTBTgT77-toaQWdOYw1_mb07EfIl5KdAxh2MYV-N5QVAyZAfiBHnCmgAip28OZ8SE5SemA5hKyqUn0ih6ABFHBxRO5ux6Leud47urGzv1-wqKN1j8V1DM_z78Lnaxu3YaQbv41I79CPXYgO2-JqCi87-mOVgLGowzCF5GdMn8nHzvYJT17rMfm1ufpZf6M3t9ff68sb6sCYmVopdWXbTsqtrlqQiilkXcWklcJgay1TrVOKa60NdNhyLUvrOoOIDJUUcEzO9nunGJ4WTHMz-OSw7-2IYUkNN1wyEJqXGT39D30ISxyzupUCo7QQVabO99S97bFZ3znnr8jZ4uBdGLHzuX-pNGeGC7MO0P2AiyGliF0zRT_YuGtK1qwGNe8MyvzXVxnLdsD2H_3XDvgDyXWKhg</recordid><startdate>20240204</startdate><enddate>20240204</enddate><creator>Michel, Silvain</creator><creator>Murphy, Neal</creator><creator>Kinloch, Anthony J</creator><creator>Jones, Rhys</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3337-2420</orcidid><orcidid>https://orcid.org/0000-0002-8752-7184</orcidid><orcidid>https://orcid.org/0000-0003-3197-2796</orcidid><orcidid>https://orcid.org/0000-0002-7236-0932</orcidid></search><sort><creationdate>20240204</creationdate><title>On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy-Polymer Composites</title><author>Michel, Silvain ; Murphy, Neal ; Kinloch, Anthony J ; Jones, Rhys</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-a5586adf55b86d35707e0f605a549edaa07dc77288893fed2851acf9eee0e7543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aging aircraft</topic><topic>Aircraft</topic><topic>Aircraft structures</topic><topic>Analysis</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Carbon-epoxy composites</topic><topic>Composite materials</topic><topic>Continuous fiber composites</topic><topic>Crack propagation</topic><topic>Data reduction</topic><topic>Delamination</topic><topic>Epoxy resins</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue testing machines</topic><topic>Fiber reinforced polymers</topic><topic>Fracture mechanics</topic><topic>Laboratories</topic><topic>Layers</topic><topic>Linear elastic fracture mechanics</topic><topic>Materials</topic><topic>Materials fatigue</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Polymer matrix composites</topic><topic>Polymeric composites</topic><topic>Polymers</topic><topic>Service life</topic><topic>Structural integrity</topic><topic>Test methods</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michel, Silvain</creatorcontrib><creatorcontrib>Murphy, Neal</creatorcontrib><creatorcontrib>Kinloch, Anthony J</creatorcontrib><creatorcontrib>Jones, Rhys</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michel, Silvain</au><au>Murphy, Neal</au><au>Kinloch, Anthony J</au><au>Jones, Rhys</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy-Polymer Composites</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-02-04</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>435</spage><pages>435-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The growth of cracks between plies, i.e., delamination, in continuous fibre polymer matrix composites under cyclic-fatigue loading in operational aircraft structures has always been a very important factor, which has the potential to significantly decrease the service life of such structures. Whilst current designs are based on a 'no growth' design philosophy, delamination growth can nevertheless arise in operational aircraft and compromise structural integrity. To this end, the present paper outlines experimental and data reduction procedures for continuous fibre polymer matrix composites, based on a linear elastic fracture mechanics approach, which are capable of (a) determining and computing the fatigue crack growth (FCG) rate, / , curve; (b) providing two different methods for determining the mandated worst-case FCG rate curve; and (c) calculating the fatigue threshold limit, below which no significant FCG occurs. Two data reduction procedures are proposed, which are based upon the Hartman-Schijve approach and a novel simple-scaling approach. These two different methodologies provide similar worst-case curves, and both provide an upper bound for all the experimental data. The calculated FCG threshold values as determined from both methodologies are also in very good agreement.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38337324</pmid><doi>10.3390/polym16030435</doi><orcidid>https://orcid.org/0000-0002-3337-2420</orcidid><orcidid>https://orcid.org/0000-0002-8752-7184</orcidid><orcidid>https://orcid.org/0000-0003-3197-2796</orcidid><orcidid>https://orcid.org/0000-0002-7236-0932</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-02, Vol.16 (3), p.435
issn 2073-4360
2073-4360
language eng
recordid cdi_proquest_miscellaneous_2925034821
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Aging aircraft
Aircraft
Aircraft structures
Analysis
Carbon
Carbon fiber reinforced plastics
Carbon fibers
Carbon-epoxy composites
Composite materials
Continuous fiber composites
Crack propagation
Data reduction
Delamination
Epoxy resins
Fatigue
Fatigue cracks
Fatigue failure
Fatigue testing machines
Fiber reinforced polymers
Fracture mechanics
Laboratories
Layers
Linear elastic fracture mechanics
Materials
Materials fatigue
Mathematical analysis
Mechanical properties
Polymer matrix composites
Polymeric composites
Polymers
Service life
Structural integrity
Test methods
Upper bounds
title On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy-Polymer Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Cyclic-Fatigue%20Crack%20Growth%20in%20Carbon-Fibre-Reinforced%20Epoxy-Polymer%20Composites&rft.jtitle=Polymers&rft.au=Michel,%20Silvain&rft.date=2024-02-04&rft.volume=16&rft.issue=3&rft.spage=435&rft.pages=435-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16030435&rft_dat=%3Cgale_proqu%3EA782092496%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923978446&rft_id=info:pmid/38337324&rft_galeid=A782092496&rfr_iscdi=true