Breaking Low-Strain and Deep-Potassiation Trade-Off in Alloy Anodes via Bonding Modulation for High-Performance K‑Ion Batteries

Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconcili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-02, Vol.146 (7), p.4752-4761
Hauptverfasser: Zhou, En, Luo, Xiao, Jin, Hongchang, Wang, Chaonan, Lu, Zhiyu, Xie, Yuansen, Zhou, Shaoyun, Chen, Yawei, He, Zixu, Ma, Ruoxuan, Zhang, Wei, Xie, Huanyu, Jiao, Shuhong, Lin, Yue, Bin, De-Shan, Huang, Rong, Wu, Xiaojun, Kong, Xianghua, Ji, Hengxing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4761
container_issue 7
container_start_page 4752
container_title Journal of the American Chemical Society
container_volume 146
creator Zhou, En
Luo, Xiao
Jin, Hongchang
Wang, Chaonan
Lu, Zhiyu
Xie, Yuansen
Zhou, Shaoyun
Chen, Yawei
He, Zixu
Ma, Ruoxuan
Zhang, Wei
Xie, Huanyu
Jiao, Shuhong
Lin, Yue
Bin, De-Shan
Huang, Rong
Wu, Xiaojun
Kong, Xianghua
Ji, Hengxing
description Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconciling the trade-off between low-strain and deep-potassiation in alloy anodes poses a considerable challenge due to the larger size of K-ions compared to Li/Na-ions. In this study, we propose a chemical bonding modulation strategy through single-atom modification to address the volume expansion of alloy anodes during potassiation. Using black phosphorus (BP) as a representative and generalizing to other alloy anodes, we established a robust P–S covalent bonding network via sulfur doping. This network exhibits sustained stability across discharge–charge cycles, elevating the modulus of K–P compounds by 74%, effectively withstanding the high strain induced by the potassiation process. Additionally, the bonding modulation reduces the formation energies of potassium phosphides, facilitating a deeper potassiation of the BP anode. As a result, the modified BP anode exhibits a high reversible capacity and extended operational lifespan, coupled with a high areal capacity. This work introduces a new perspective on overcoming the trade-off between low-strain and deep-potassiation in alloy anodes for the development of high-energy and stable potassium-ion batteries.
doi_str_mv 10.1021/jacs.3c12654
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925001741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2925001741</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-dd77ad8d25912463f349a6721a3b2b5987144346f951d83023535090d79536f63</originalsourceid><addsrcrecordid>eNptkLtOAzEQRS0EgvDoqJFLCgx-7qNMwlMEgQTUq8naCw4bO9i7IDr4BH6RL2GjBGioZkZz7h3NRWiX0UNGOTuaQBkPRcl4ouQK6jHFKVHdtIp6lFJO0iwRG2gzxkk3Sp6xdbQhMiGklGkPfQyCgSfrHvDIv5LbJoB1GJzGx8bMyI1vIEYLjfUO3wXQhlxXFe6Qfl37N9x3XpuIXyzggXd6bnPldVsvBJUP-Nw-PJIbE7p-Cq40-PLr_fOiWw6gaUywJm6jtQrqaHaWdQvdn57cDc_J6PrsYtgfERBcNkTrNAWdaa5yxmUiKiFzSFLOQIz5WOVZyqQUMqlyxXQmKBdKKJpTneZKJFUittD-wncW_HNrYlNMbSxNXYMzvo0Fz7milKWSdejBAi2DjzGYqpgFO4XwVjBazEMv5qEXy9A7fG_p3I6nRv_CPyn_nZ6rJr4Nrnv0f69vSLGKBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925001741</pqid></control><display><type>article</type><title>Breaking Low-Strain and Deep-Potassiation Trade-Off in Alloy Anodes via Bonding Modulation for High-Performance K‑Ion Batteries</title><source>American Chemical Society Journals</source><creator>Zhou, En ; Luo, Xiao ; Jin, Hongchang ; Wang, Chaonan ; Lu, Zhiyu ; Xie, Yuansen ; Zhou, Shaoyun ; Chen, Yawei ; He, Zixu ; Ma, Ruoxuan ; Zhang, Wei ; Xie, Huanyu ; Jiao, Shuhong ; Lin, Yue ; Bin, De-Shan ; Huang, Rong ; Wu, Xiaojun ; Kong, Xianghua ; Ji, Hengxing</creator><creatorcontrib>Zhou, En ; Luo, Xiao ; Jin, Hongchang ; Wang, Chaonan ; Lu, Zhiyu ; Xie, Yuansen ; Zhou, Shaoyun ; Chen, Yawei ; He, Zixu ; Ma, Ruoxuan ; Zhang, Wei ; Xie, Huanyu ; Jiao, Shuhong ; Lin, Yue ; Bin, De-Shan ; Huang, Rong ; Wu, Xiaojun ; Kong, Xianghua ; Ji, Hengxing</creatorcontrib><description>Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconciling the trade-off between low-strain and deep-potassiation in alloy anodes poses a considerable challenge due to the larger size of K-ions compared to Li/Na-ions. In this study, we propose a chemical bonding modulation strategy through single-atom modification to address the volume expansion of alloy anodes during potassiation. Using black phosphorus (BP) as a representative and generalizing to other alloy anodes, we established a robust P–S covalent bonding network via sulfur doping. This network exhibits sustained stability across discharge–charge cycles, elevating the modulus of K–P compounds by 74%, effectively withstanding the high strain induced by the potassiation process. Additionally, the bonding modulation reduces the formation energies of potassium phosphides, facilitating a deeper potassiation of the BP anode. As a result, the modified BP anode exhibits a high reversible capacity and extended operational lifespan, coupled with a high areal capacity. This work introduces a new perspective on overcoming the trade-off between low-strain and deep-potassiation in alloy anodes for the development of high-energy and stable potassium-ion batteries.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c12654</identifier><identifier>PMID: 38334447</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-02, Vol.146 (7), p.4752-4761</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-dd77ad8d25912463f349a6721a3b2b5987144346f951d83023535090d79536f63</citedby><cites>FETCH-LOGICAL-a324t-dd77ad8d25912463f349a6721a3b2b5987144346f951d83023535090d79536f63</cites><orcidid>0000-0003-3606-1211 ; 0000-0003-0860-4151 ; 0000-0001-5333-511X ; 0000-0003-2851-9878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c12654$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c12654$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38334447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, En</creatorcontrib><creatorcontrib>Luo, Xiao</creatorcontrib><creatorcontrib>Jin, Hongchang</creatorcontrib><creatorcontrib>Wang, Chaonan</creatorcontrib><creatorcontrib>Lu, Zhiyu</creatorcontrib><creatorcontrib>Xie, Yuansen</creatorcontrib><creatorcontrib>Zhou, Shaoyun</creatorcontrib><creatorcontrib>Chen, Yawei</creatorcontrib><creatorcontrib>He, Zixu</creatorcontrib><creatorcontrib>Ma, Ruoxuan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Xie, Huanyu</creatorcontrib><creatorcontrib>Jiao, Shuhong</creatorcontrib><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Bin, De-Shan</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Kong, Xianghua</creatorcontrib><creatorcontrib>Ji, Hengxing</creatorcontrib><title>Breaking Low-Strain and Deep-Potassiation Trade-Off in Alloy Anodes via Bonding Modulation for High-Performance K‑Ion Batteries</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconciling the trade-off between low-strain and deep-potassiation in alloy anodes poses a considerable challenge due to the larger size of K-ions compared to Li/Na-ions. In this study, we propose a chemical bonding modulation strategy through single-atom modification to address the volume expansion of alloy anodes during potassiation. Using black phosphorus (BP) as a representative and generalizing to other alloy anodes, we established a robust P–S covalent bonding network via sulfur doping. This network exhibits sustained stability across discharge–charge cycles, elevating the modulus of K–P compounds by 74%, effectively withstanding the high strain induced by the potassiation process. Additionally, the bonding modulation reduces the formation energies of potassium phosphides, facilitating a deeper potassiation of the BP anode. As a result, the modified BP anode exhibits a high reversible capacity and extended operational lifespan, coupled with a high areal capacity. This work introduces a new perspective on overcoming the trade-off between low-strain and deep-potassiation in alloy anodes for the development of high-energy and stable potassium-ion batteries.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkLtOAzEQRS0EgvDoqJFLCgx-7qNMwlMEgQTUq8naCw4bO9i7IDr4BH6RL2GjBGioZkZz7h3NRWiX0UNGOTuaQBkPRcl4ouQK6jHFKVHdtIp6lFJO0iwRG2gzxkk3Sp6xdbQhMiGklGkPfQyCgSfrHvDIv5LbJoB1GJzGx8bMyI1vIEYLjfUO3wXQhlxXFe6Qfl37N9x3XpuIXyzggXd6bnPldVsvBJUP-Nw-PJIbE7p-Cq40-PLr_fOiWw6gaUywJm6jtQrqaHaWdQvdn57cDc_J6PrsYtgfERBcNkTrNAWdaa5yxmUiKiFzSFLOQIz5WOVZyqQUMqlyxXQmKBdKKJpTneZKJFUittD-wncW_HNrYlNMbSxNXYMzvo0Fz7milKWSdejBAi2DjzGYqpgFO4XwVjBazEMv5qEXy9A7fG_p3I6nRv_CPyn_nZ6rJr4Nrnv0f69vSLGKBg</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Zhou, En</creator><creator>Luo, Xiao</creator><creator>Jin, Hongchang</creator><creator>Wang, Chaonan</creator><creator>Lu, Zhiyu</creator><creator>Xie, Yuansen</creator><creator>Zhou, Shaoyun</creator><creator>Chen, Yawei</creator><creator>He, Zixu</creator><creator>Ma, Ruoxuan</creator><creator>Zhang, Wei</creator><creator>Xie, Huanyu</creator><creator>Jiao, Shuhong</creator><creator>Lin, Yue</creator><creator>Bin, De-Shan</creator><creator>Huang, Rong</creator><creator>Wu, Xiaojun</creator><creator>Kong, Xianghua</creator><creator>Ji, Hengxing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3606-1211</orcidid><orcidid>https://orcid.org/0000-0003-0860-4151</orcidid><orcidid>https://orcid.org/0000-0001-5333-511X</orcidid><orcidid>https://orcid.org/0000-0003-2851-9878</orcidid></search><sort><creationdate>20240221</creationdate><title>Breaking Low-Strain and Deep-Potassiation Trade-Off in Alloy Anodes via Bonding Modulation for High-Performance K‑Ion Batteries</title><author>Zhou, En ; Luo, Xiao ; Jin, Hongchang ; Wang, Chaonan ; Lu, Zhiyu ; Xie, Yuansen ; Zhou, Shaoyun ; Chen, Yawei ; He, Zixu ; Ma, Ruoxuan ; Zhang, Wei ; Xie, Huanyu ; Jiao, Shuhong ; Lin, Yue ; Bin, De-Shan ; Huang, Rong ; Wu, Xiaojun ; Kong, Xianghua ; Ji, Hengxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-dd77ad8d25912463f349a6721a3b2b5987144346f951d83023535090d79536f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, En</creatorcontrib><creatorcontrib>Luo, Xiao</creatorcontrib><creatorcontrib>Jin, Hongchang</creatorcontrib><creatorcontrib>Wang, Chaonan</creatorcontrib><creatorcontrib>Lu, Zhiyu</creatorcontrib><creatorcontrib>Xie, Yuansen</creatorcontrib><creatorcontrib>Zhou, Shaoyun</creatorcontrib><creatorcontrib>Chen, Yawei</creatorcontrib><creatorcontrib>He, Zixu</creatorcontrib><creatorcontrib>Ma, Ruoxuan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Xie, Huanyu</creatorcontrib><creatorcontrib>Jiao, Shuhong</creatorcontrib><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Bin, De-Shan</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Kong, Xianghua</creatorcontrib><creatorcontrib>Ji, Hengxing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, En</au><au>Luo, Xiao</au><au>Jin, Hongchang</au><au>Wang, Chaonan</au><au>Lu, Zhiyu</au><au>Xie, Yuansen</au><au>Zhou, Shaoyun</au><au>Chen, Yawei</au><au>He, Zixu</au><au>Ma, Ruoxuan</au><au>Zhang, Wei</au><au>Xie, Huanyu</au><au>Jiao, Shuhong</au><au>Lin, Yue</au><au>Bin, De-Shan</au><au>Huang, Rong</au><au>Wu, Xiaojun</au><au>Kong, Xianghua</au><au>Ji, Hengxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking Low-Strain and Deep-Potassiation Trade-Off in Alloy Anodes via Bonding Modulation for High-Performance K‑Ion Batteries</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-02-21</date><risdate>2024</risdate><volume>146</volume><issue>7</issue><spage>4752</spage><epage>4761</epage><pages>4752-4761</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconciling the trade-off between low-strain and deep-potassiation in alloy anodes poses a considerable challenge due to the larger size of K-ions compared to Li/Na-ions. In this study, we propose a chemical bonding modulation strategy through single-atom modification to address the volume expansion of alloy anodes during potassiation. Using black phosphorus (BP) as a representative and generalizing to other alloy anodes, we established a robust P–S covalent bonding network via sulfur doping. This network exhibits sustained stability across discharge–charge cycles, elevating the modulus of K–P compounds by 74%, effectively withstanding the high strain induced by the potassiation process. Additionally, the bonding modulation reduces the formation energies of potassium phosphides, facilitating a deeper potassiation of the BP anode. As a result, the modified BP anode exhibits a high reversible capacity and extended operational lifespan, coupled with a high areal capacity. This work introduces a new perspective on overcoming the trade-off between low-strain and deep-potassiation in alloy anodes for the development of high-energy and stable potassium-ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38334447</pmid><doi>10.1021/jacs.3c12654</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3606-1211</orcidid><orcidid>https://orcid.org/0000-0003-0860-4151</orcidid><orcidid>https://orcid.org/0000-0001-5333-511X</orcidid><orcidid>https://orcid.org/0000-0003-2851-9878</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-02, Vol.146 (7), p.4752-4761
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2925001741
source American Chemical Society Journals
title Breaking Low-Strain and Deep-Potassiation Trade-Off in Alloy Anodes via Bonding Modulation for High-Performance K‑Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20Low-Strain%20and%20Deep-Potassiation%20Trade-Off%20in%20Alloy%20Anodes%20via%20Bonding%20Modulation%20for%20High-Performance%20K%E2%80%91Ion%20Batteries&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhou,%20En&rft.date=2024-02-21&rft.volume=146&rft.issue=7&rft.spage=4752&rft.epage=4761&rft.pages=4752-4761&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c12654&rft_dat=%3Cproquest_cross%3E2925001741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925001741&rft_id=info:pmid/38334447&rfr_iscdi=true