The Fundamental Disorder Unit in (Si, P)−(O, N) Networks
This study presents the synthesis and characterization of oxonitridosilicate phosphates Sr3SiP3O2N7, Sr5Si2P4ON12, and Sr16Si9P9O7N33 as the first of their kind. These compounds were synthesized under high‐temperature (1400 °C) and high‐pressure (3 GPa) conditions. A unique structural feature is the...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-04, Vol.63 (17), p.e202401419-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents the synthesis and characterization of oxonitridosilicate phosphates Sr3SiP3O2N7, Sr5Si2P4ON12, and Sr16Si9P9O7N33 as the first of their kind. These compounds were synthesized under high‐temperature (1400 °C) and high‐pressure (3 GPa) conditions. A unique structural feature is their common fundamental building unit, a vierer single chain of (Si, P)(O, N)4 tetrahedra. All tetrahedra comprise substitutional disorder which is why we refer to it as the fundamental disorder unit (FDU). We classified four different FDU motifs, revealing systematic bonding patterns. Including literature known Sr5Si2P6N16, three of the four patterns were found in the presented compounds. Common techniques like single‐crystal X‐ray diffraction (SCXRD), elemental analyses, and 31P nuclear magnetic resonance (NMR) spectroscopy were utilized for structural analysis. Additionally, low‐cost crystallographic calculations (LCC) provided insights into the structure of Sr16Si9P9O7N33 where NMR data were unavailable due to the lack of bulk samples. The optical properties of these compounds, when doped with Eu2+, were investigated using photoluminescence excitation (PLE), photoluminescence (PL) measurements, and density functional theory (DFT) calculations. Factors influencing the emission properties, including thermal quenching mechanisms, were discussed. This research reveals the new class of oxonitridosilicate phosphates with unique systematic structural features that offer potential for theoretical studies of luminescence and band gap tuning in insulators.
In this study, the new compound class of oxonitridosilicate phosphates is presented with the three representatives Sr3SiP3O2N7, Sr5Si2P4ON12, and Sr16Si9P9O7N33. All compounds feature a vierer single chain of disordered (Si,P)(O,N)4 tetrahedra, which is named the fundamental disorder unit. Investigations of luminescence on Eu2+‐doped compounds showed a quenching behavior that makes them interesting model systems for theoretical calculations. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202401419 |