OCTA-500: A retinal dataset for optical coherence tomography angiography study

Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2024-04, Vol.93, p.103092-103092, Article 103092
Hauptverfasser: Li, Mingchao, Huang, Kun, Xu, Qiuzhuo, Yang, Jiadong, Zhang, Yuhan, Ji, Zexuan, Xie, Keren, Yuan, Songtao, Liu, Qinghuai, Chen, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103092
container_issue
container_start_page 103092
container_title Medical image analysis
container_volume 93
creator Li, Mingchao
Huang, Kun
Xu, Qiuzhuo
Yang, Jiadong
Zhang, Yuhan
Ji, Zexuan
Xie, Keren
Yuan, Songtao
Liu, Qinghuai
Chen, Qiang
description Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age/gender/eye/disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an about 10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500. •Proposed OCTA-500, which is the largest and comprehensive OCTA dataset.•The OCTA-500 includes OCTA imaging from 500 subjects and rich annotation information.•Proposed a CAVF task, which integrates multiple key segmentation tasks.•Optimized the IPN to IPN-V2 to serve as one of the competitive baselines.•The OCTA-500 dataset has great potential to promote other researches in OCTA.
doi_str_mv 10.1016/j.media.2024.103092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2923914362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841524000173</els_id><sourcerecordid>2923914362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-56886cb744f8262a040b425b9fe37dc6e28a18ae0040c1d0222060489ede09133</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYjD4BUioRy4dTtJ2LRKHaeJLmthlnKM0dbdM7TKSFGn_noxuO3KyZb_2az-E3FEYUaDZ43rUYqXliAFLQoVDwc7IFeUZjfOE8fNTTtMBuXZuDQDjJIFLMuA5ZylN0yvyOZ8uJnEK8BRNIoteb2QTVdJLhz6qjY3M1msVasqs0OJGYeRNa5ZWble7SG6W-pg731W7G3JRy8bh7SEOydfry2L6Hs_mbx_TySxWPC18nGZ5nqkyXFPnLGMSEigTlpZFjXxcqQxZLmkuEUJD0QoYY5BBkhdYIRSU8yF56Pdurfnu0HnRaqewaeQGTecEKxgvaMIzFqS8lyprnLNYi63VrbQ7QUHsQYq1-AMp9iBFDzJM3R8MujJ0TzNHckHw3AswvPmj0Qqn9J5PpS0qLyqj_zX4BYGEgq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923914362</pqid></control><display><type>article</type><title>OCTA-500: A retinal dataset for optical coherence tomography angiography study</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Mingchao ; Huang, Kun ; Xu, Qiuzhuo ; Yang, Jiadong ; Zhang, Yuhan ; Ji, Zexuan ; Xie, Keren ; Yuan, Songtao ; Liu, Qinghuai ; Chen, Qiang</creator><creatorcontrib>Li, Mingchao ; Huang, Kun ; Xu, Qiuzhuo ; Yang, Jiadong ; Zhang, Yuhan ; Ji, Zexuan ; Xie, Keren ; Yuan, Songtao ; Liu, Qinghuai ; Chen, Qiang</creatorcontrib><description>Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age/gender/eye/disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an about 10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500. •Proposed OCTA-500, which is the largest and comprehensive OCTA dataset.•The OCTA-500 includes OCTA imaging from 500 subjects and rich annotation information.•Proposed a CAVF task, which integrates multiple key segmentation tasks.•Optimized the IPN to IPN-V2 to serve as one of the competitive baselines.•The OCTA-500 dataset has great potential to promote other researches in OCTA.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2024.103092</identifier><identifier>PMID: 38325155</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Medical image dataset ; OCTA ; Retina ; Segmentation</subject><ispartof>Medical image analysis, 2024-04, Vol.93, p.103092-103092, Article 103092</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-56886cb744f8262a040b425b9fe37dc6e28a18ae0040c1d0222060489ede09133</citedby><cites>FETCH-LOGICAL-c359t-56886cb744f8262a040b425b9fe37dc6e28a18ae0040c1d0222060489ede09133</cites><orcidid>0000-0002-4421-2414 ; 0000-0002-6685-2447 ; 0000-0001-7034-3357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2024.103092$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38325155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Mingchao</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Xu, Qiuzhuo</creatorcontrib><creatorcontrib>Yang, Jiadong</creatorcontrib><creatorcontrib>Zhang, Yuhan</creatorcontrib><creatorcontrib>Ji, Zexuan</creatorcontrib><creatorcontrib>Xie, Keren</creatorcontrib><creatorcontrib>Yuan, Songtao</creatorcontrib><creatorcontrib>Liu, Qinghuai</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><title>OCTA-500: A retinal dataset for optical coherence tomography angiography study</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age/gender/eye/disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an about 10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500. •Proposed OCTA-500, which is the largest and comprehensive OCTA dataset.•The OCTA-500 includes OCTA imaging from 500 subjects and rich annotation information.•Proposed a CAVF task, which integrates multiple key segmentation tasks.•Optimized the IPN to IPN-V2 to serve as one of the competitive baselines.•The OCTA-500 dataset has great potential to promote other researches in OCTA.</description><subject>Medical image dataset</subject><subject>OCTA</subject><subject>Retina</subject><subject>Segmentation</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEYjD4BUioRy4dTtJ2LRKHaeJLmthlnKM0dbdM7TKSFGn_noxuO3KyZb_2az-E3FEYUaDZ43rUYqXliAFLQoVDwc7IFeUZjfOE8fNTTtMBuXZuDQDjJIFLMuA5ZylN0yvyOZ8uJnEK8BRNIoteb2QTVdJLhz6qjY3M1msVasqs0OJGYeRNa5ZWble7SG6W-pg731W7G3JRy8bh7SEOydfry2L6Hs_mbx_TySxWPC18nGZ5nqkyXFPnLGMSEigTlpZFjXxcqQxZLmkuEUJD0QoYY5BBkhdYIRSU8yF56Pdurfnu0HnRaqewaeQGTecEKxgvaMIzFqS8lyprnLNYi63VrbQ7QUHsQYq1-AMp9iBFDzJM3R8MujJ0TzNHckHw3AswvPmj0Qqn9J5PpS0qLyqj_zX4BYGEgq0</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Li, Mingchao</creator><creator>Huang, Kun</creator><creator>Xu, Qiuzhuo</creator><creator>Yang, Jiadong</creator><creator>Zhang, Yuhan</creator><creator>Ji, Zexuan</creator><creator>Xie, Keren</creator><creator>Yuan, Songtao</creator><creator>Liu, Qinghuai</creator><creator>Chen, Qiang</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4421-2414</orcidid><orcidid>https://orcid.org/0000-0002-6685-2447</orcidid><orcidid>https://orcid.org/0000-0001-7034-3357</orcidid></search><sort><creationdate>202404</creationdate><title>OCTA-500: A retinal dataset for optical coherence tomography angiography study</title><author>Li, Mingchao ; Huang, Kun ; Xu, Qiuzhuo ; Yang, Jiadong ; Zhang, Yuhan ; Ji, Zexuan ; Xie, Keren ; Yuan, Songtao ; Liu, Qinghuai ; Chen, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-56886cb744f8262a040b425b9fe37dc6e28a18ae0040c1d0222060489ede09133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Medical image dataset</topic><topic>OCTA</topic><topic>Retina</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mingchao</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Xu, Qiuzhuo</creatorcontrib><creatorcontrib>Yang, Jiadong</creatorcontrib><creatorcontrib>Zhang, Yuhan</creatorcontrib><creatorcontrib>Ji, Zexuan</creatorcontrib><creatorcontrib>Xie, Keren</creatorcontrib><creatorcontrib>Yuan, Songtao</creatorcontrib><creatorcontrib>Liu, Qinghuai</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mingchao</au><au>Huang, Kun</au><au>Xu, Qiuzhuo</au><au>Yang, Jiadong</au><au>Zhang, Yuhan</au><au>Ji, Zexuan</au><au>Xie, Keren</au><au>Yuan, Songtao</au><au>Liu, Qinghuai</au><au>Chen, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OCTA-500: A retinal dataset for optical coherence tomography angiography study</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2024-04</date><risdate>2024</risdate><volume>93</volume><spage>103092</spage><epage>103092</epage><pages>103092-103092</pages><artnum>103092</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age/gender/eye/disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an about 10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500. •Proposed OCTA-500, which is the largest and comprehensive OCTA dataset.•The OCTA-500 includes OCTA imaging from 500 subjects and rich annotation information.•Proposed a CAVF task, which integrates multiple key segmentation tasks.•Optimized the IPN to IPN-V2 to serve as one of the competitive baselines.•The OCTA-500 dataset has great potential to promote other researches in OCTA.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38325155</pmid><doi>10.1016/j.media.2024.103092</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4421-2414</orcidid><orcidid>https://orcid.org/0000-0002-6685-2447</orcidid><orcidid>https://orcid.org/0000-0001-7034-3357</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2024-04, Vol.93, p.103092-103092, Article 103092
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_2923914362
source Elsevier ScienceDirect Journals Complete
subjects Medical image dataset
OCTA
Retina
Segmentation
title OCTA-500: A retinal dataset for optical coherence tomography angiography study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OCTA-500:%20A%20retinal%20dataset%20for%20optical%20coherence%20tomography%20angiography%20study&rft.jtitle=Medical%20image%20analysis&rft.au=Li,%20Mingchao&rft.date=2024-04&rft.volume=93&rft.spage=103092&rft.epage=103092&rft.pages=103092-103092&rft.artnum=103092&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2024.103092&rft_dat=%3Cproquest_cross%3E2923914362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923914362&rft_id=info:pmid/38325155&rft_els_id=S1361841524000173&rfr_iscdi=true