OCTA-500: A retinal dataset for optical coherence tomography angiography study
Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest a...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2024-04, Vol.93, p.103092-103092, Article 103092 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103092 |
---|---|
container_issue | |
container_start_page | 103092 |
container_title | Medical image analysis |
container_volume | 93 |
creator | Li, Mingchao Huang, Kun Xu, Qiuzhuo Yang, Jiadong Zhang, Yuhan Ji, Zexuan Xie, Keren Yuan, Songtao Liu, Qinghuai Chen, Qiang |
description | Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age/gender/eye/disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an about 10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500.
•Proposed OCTA-500, which is the largest and comprehensive OCTA dataset.•The OCTA-500 includes OCTA imaging from 500 subjects and rich annotation information.•Proposed a CAVF task, which integrates multiple key segmentation tasks.•Optimized the IPN to IPN-V2 to serve as one of the competitive baselines.•The OCTA-500 dataset has great potential to promote other researches in OCTA. |
doi_str_mv | 10.1016/j.media.2024.103092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2923914362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841524000173</els_id><sourcerecordid>2923914362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-56886cb744f8262a040b425b9fe37dc6e28a18ae0040c1d0222060489ede09133</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYjD4BUioRy4dTtJ2LRKHaeJLmthlnKM0dbdM7TKSFGn_noxuO3KyZb_2az-E3FEYUaDZ43rUYqXliAFLQoVDwc7IFeUZjfOE8fNTTtMBuXZuDQDjJIFLMuA5ZylN0yvyOZ8uJnEK8BRNIoteb2QTVdJLhz6qjY3M1msVasqs0OJGYeRNa5ZWble7SG6W-pg731W7G3JRy8bh7SEOydfry2L6Hs_mbx_TySxWPC18nGZ5nqkyXFPnLGMSEigTlpZFjXxcqQxZLmkuEUJD0QoYY5BBkhdYIRSU8yF56Pdurfnu0HnRaqewaeQGTecEKxgvaMIzFqS8lyprnLNYi63VrbQ7QUHsQYq1-AMp9iBFDzJM3R8MujJ0TzNHckHw3AswvPmj0Qqn9J5PpS0qLyqj_zX4BYGEgq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923914362</pqid></control><display><type>article</type><title>OCTA-500: A retinal dataset for optical coherence tomography angiography study</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Mingchao ; Huang, Kun ; Xu, Qiuzhuo ; Yang, Jiadong ; Zhang, Yuhan ; Ji, Zexuan ; Xie, Keren ; Yuan, Songtao ; Liu, Qinghuai ; Chen, Qiang</creator><creatorcontrib>Li, Mingchao ; Huang, Kun ; Xu, Qiuzhuo ; Yang, Jiadong ; Zhang, Yuhan ; Ji, Zexuan ; Xie, Keren ; Yuan, Songtao ; Liu, Qinghuai ; Chen, Qiang</creatorcontrib><description>Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age/gender/eye/disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an about 10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500.
•Proposed OCTA-500, which is the largest and comprehensive OCTA dataset.•The OCTA-500 includes OCTA imaging from 500 subjects and rich annotation information.•Proposed a CAVF task, which integrates multiple key segmentation tasks.•Optimized the IPN to IPN-V2 to serve as one of the competitive baselines.•The OCTA-500 dataset has great potential to promote other researches in OCTA.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2024.103092</identifier><identifier>PMID: 38325155</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Medical image dataset ; OCTA ; Retina ; Segmentation</subject><ispartof>Medical image analysis, 2024-04, Vol.93, p.103092-103092, Article 103092</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-56886cb744f8262a040b425b9fe37dc6e28a18ae0040c1d0222060489ede09133</citedby><cites>FETCH-LOGICAL-c359t-56886cb744f8262a040b425b9fe37dc6e28a18ae0040c1d0222060489ede09133</cites><orcidid>0000-0002-4421-2414 ; 0000-0002-6685-2447 ; 0000-0001-7034-3357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2024.103092$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38325155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Mingchao</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Xu, Qiuzhuo</creatorcontrib><creatorcontrib>Yang, Jiadong</creatorcontrib><creatorcontrib>Zhang, Yuhan</creatorcontrib><creatorcontrib>Ji, Zexuan</creatorcontrib><creatorcontrib>Xie, Keren</creatorcontrib><creatorcontrib>Yuan, Songtao</creatorcontrib><creatorcontrib>Liu, Qinghuai</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><title>OCTA-500: A retinal dataset for optical coherence tomography angiography study</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age/gender/eye/disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an about 10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500.
•Proposed OCTA-500, which is the largest and comprehensive OCTA dataset.•The OCTA-500 includes OCTA imaging from 500 subjects and rich annotation information.•Proposed a CAVF task, which integrates multiple key segmentation tasks.•Optimized the IPN to IPN-V2 to serve as one of the competitive baselines.•The OCTA-500 dataset has great potential to promote other researches in OCTA.</description><subject>Medical image dataset</subject><subject>OCTA</subject><subject>Retina</subject><subject>Segmentation</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEYjD4BUioRy4dTtJ2LRKHaeJLmthlnKM0dbdM7TKSFGn_noxuO3KyZb_2az-E3FEYUaDZ43rUYqXliAFLQoVDwc7IFeUZjfOE8fNTTtMBuXZuDQDjJIFLMuA5ZylN0yvyOZ8uJnEK8BRNIoteb2QTVdJLhz6qjY3M1msVasqs0OJGYeRNa5ZWble7SG6W-pg731W7G3JRy8bh7SEOydfry2L6Hs_mbx_TySxWPC18nGZ5nqkyXFPnLGMSEigTlpZFjXxcqQxZLmkuEUJD0QoYY5BBkhdYIRSU8yF56Pdurfnu0HnRaqewaeQGTecEKxgvaMIzFqS8lyprnLNYi63VrbQ7QUHsQYq1-AMp9iBFDzJM3R8MujJ0TzNHckHw3AswvPmj0Qqn9J5PpS0qLyqj_zX4BYGEgq0</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Li, Mingchao</creator><creator>Huang, Kun</creator><creator>Xu, Qiuzhuo</creator><creator>Yang, Jiadong</creator><creator>Zhang, Yuhan</creator><creator>Ji, Zexuan</creator><creator>Xie, Keren</creator><creator>Yuan, Songtao</creator><creator>Liu, Qinghuai</creator><creator>Chen, Qiang</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4421-2414</orcidid><orcidid>https://orcid.org/0000-0002-6685-2447</orcidid><orcidid>https://orcid.org/0000-0001-7034-3357</orcidid></search><sort><creationdate>202404</creationdate><title>OCTA-500: A retinal dataset for optical coherence tomography angiography study</title><author>Li, Mingchao ; Huang, Kun ; Xu, Qiuzhuo ; Yang, Jiadong ; Zhang, Yuhan ; Ji, Zexuan ; Xie, Keren ; Yuan, Songtao ; Liu, Qinghuai ; Chen, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-56886cb744f8262a040b425b9fe37dc6e28a18ae0040c1d0222060489ede09133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Medical image dataset</topic><topic>OCTA</topic><topic>Retina</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mingchao</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Xu, Qiuzhuo</creatorcontrib><creatorcontrib>Yang, Jiadong</creatorcontrib><creatorcontrib>Zhang, Yuhan</creatorcontrib><creatorcontrib>Ji, Zexuan</creatorcontrib><creatorcontrib>Xie, Keren</creatorcontrib><creatorcontrib>Yuan, Songtao</creatorcontrib><creatorcontrib>Liu, Qinghuai</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mingchao</au><au>Huang, Kun</au><au>Xu, Qiuzhuo</au><au>Yang, Jiadong</au><au>Zhang, Yuhan</au><au>Ji, Zexuan</au><au>Xie, Keren</au><au>Yuan, Songtao</au><au>Liu, Qinghuai</au><au>Chen, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OCTA-500: A retinal dataset for optical coherence tomography angiography study</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2024-04</date><risdate>2024</risdate><volume>93</volume><spage>103092</spage><epage>103092</epage><pages>103092-103092</pages><artnum>103092</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age/gender/eye/disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an about 10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500.
•Proposed OCTA-500, which is the largest and comprehensive OCTA dataset.•The OCTA-500 includes OCTA imaging from 500 subjects and rich annotation information.•Proposed a CAVF task, which integrates multiple key segmentation tasks.•Optimized the IPN to IPN-V2 to serve as one of the competitive baselines.•The OCTA-500 dataset has great potential to promote other researches in OCTA.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38325155</pmid><doi>10.1016/j.media.2024.103092</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4421-2414</orcidid><orcidid>https://orcid.org/0000-0002-6685-2447</orcidid><orcidid>https://orcid.org/0000-0001-7034-3357</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2024-04, Vol.93, p.103092-103092, Article 103092 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_2923914362 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Medical image dataset OCTA Retina Segmentation |
title | OCTA-500: A retinal dataset for optical coherence tomography angiography study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OCTA-500:%20A%20retinal%20dataset%20for%20optical%20coherence%20tomography%20angiography%20study&rft.jtitle=Medical%20image%20analysis&rft.au=Li,%20Mingchao&rft.date=2024-04&rft.volume=93&rft.spage=103092&rft.epage=103092&rft.pages=103092-103092&rft.artnum=103092&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2024.103092&rft_dat=%3Cproquest_cross%3E2923914362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923914362&rft_id=info:pmid/38325155&rft_els_id=S1361841524000173&rfr_iscdi=true |