Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System
This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The propo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2024-06, Vol.18 (3), p.702-713 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 713 |
---|---|
container_issue | 3 |
container_start_page | 702 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 18 |
creator | Lee, Young-Chan Ko, Doo-Hyeon Son, Min-Hyeong Yang, Se-Hwan Um, Ji-Yong |
description | This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838. |
doi_str_mv | 10.1109/TBCAS.2024.3363134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2923913749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10423872</ieee_id><sourcerecordid>3061458011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-878d2c6b053ee06e7474a089578790908d470d03e616b5c4f0b615ce243ca01e3</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVJaT7af6CEIOilF29HGsm2jptt8wEJLWz2LLTybKNgy4lkH_Lfx5vdlNDTzMDvPYb3GPsqYCYEmB9354v5ciZBqhliiQLVB3YkjILCGAMH2x1lobTSh-w45wcAXUojP7FDrFEqhfqIdfM0UAqu5T9DHijm0Ed-28cw9CnEv3zp76kjvsrb4-LP5bw4d5kafh03lCh64rfO34dIPES-aofkcj_GZtK5GCnxRUh-DANfPk_u3Wf2cePaTF_284StLn7dLa6Km9-X14v5TeERcCjqqm6kL9egkQhKqlSlHNRGV3VlwEDdqAoaQCpFudZebWBdCu1JKvQOBOEJ-77zfUz900h5sF3IntrWRerHbKcU0AislJnQb_-hD_2Y4vSdRSiF0jUIMVFyR_nU55xoYx9T6Fx6tgLstgz7WobdlmH3ZUyis731uO6o-Sd5S38CTndAIKJ3jkpiXUl8Aap1jIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061458011</pqid></control><display><type>article</type><title>Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Young-Chan ; Ko, Doo-Hyeon ; Son, Min-Hyeong ; Yang, Se-Hwan ; Um, Ji-Yong</creator><creatorcontrib>Lee, Young-Chan ; Ko, Doo-Hyeon ; Son, Min-Hyeong ; Yang, Se-Hwan ; Um, Ji-Yong</creatorcontrib><description>This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838.</description><identifier>ISSN: 1932-4545</identifier><identifier>ISSN: 1940-9990</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2024.3363134</identifier><identifier>PMID: 38324435</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analog circuits ; Arterial distension monitoring ; Biomedical monitoring ; Blood pressure ; Carotid arteries ; Carotid Arteries - diagnostic imaging ; Carotid Arteries - physiology ; Carotid artery ; Distension ; field programmable gate array (FPGA) ; Field programmable gate arrays ; Finite state machines ; Humans ; Image Processing, Computer-Assisted - methods ; Inference ; Monitoring ; Probes ; Resource utilization ; Scanners ; sequential support vector machine (SVM) ; Signal Processing, Computer-Assisted - instrumentation ; Support Vector Machine ; Support vector machines ; Ultrasonic imaging ; Ultrasonic scanners ; Ultrasonography - instrumentation ; Ultrasonography - methods ; Ultrasound ; ultrasound probe positioning ; ultrasound scanner</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2024-06, Vol.18 (3), p.702-713</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-878d2c6b053ee06e7474a089578790908d470d03e616b5c4f0b615ce243ca01e3</cites><orcidid>0000-0002-2315-9503 ; 0009-0008-8442-2345 ; 0000-0002-0180-0400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10423872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10423872$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38324435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Young-Chan</creatorcontrib><creatorcontrib>Ko, Doo-Hyeon</creatorcontrib><creatorcontrib>Son, Min-Hyeong</creatorcontrib><creatorcontrib>Yang, Se-Hwan</creatorcontrib><creatorcontrib>Um, Ji-Yong</creatorcontrib><title>Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838.</description><subject>Analog circuits</subject><subject>Arterial distension monitoring</subject><subject>Biomedical monitoring</subject><subject>Blood pressure</subject><subject>Carotid arteries</subject><subject>Carotid Arteries - diagnostic imaging</subject><subject>Carotid Arteries - physiology</subject><subject>Carotid artery</subject><subject>Distension</subject><subject>field programmable gate array (FPGA)</subject><subject>Field programmable gate arrays</subject><subject>Finite state machines</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Inference</subject><subject>Monitoring</subject><subject>Probes</subject><subject>Resource utilization</subject><subject>Scanners</subject><subject>sequential support vector machine (SVM)</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic scanners</subject><subject>Ultrasonography - instrumentation</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>ultrasound probe positioning</subject><subject>ultrasound scanner</subject><issn>1932-4545</issn><issn>1940-9990</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVJaT7af6CEIOilF29HGsm2jptt8wEJLWz2LLTybKNgy4lkH_Lfx5vdlNDTzMDvPYb3GPsqYCYEmB9354v5ciZBqhliiQLVB3YkjILCGAMH2x1lobTSh-w45wcAXUojP7FDrFEqhfqIdfM0UAqu5T9DHijm0Ed-28cw9CnEv3zp76kjvsrb4-LP5bw4d5kafh03lCh64rfO34dIPES-aofkcj_GZtK5GCnxRUh-DANfPk_u3Wf2cePaTF_284StLn7dLa6Km9-X14v5TeERcCjqqm6kL9egkQhKqlSlHNRGV3VlwEDdqAoaQCpFudZebWBdCu1JKvQOBOEJ-77zfUz900h5sF3IntrWRerHbKcU0AislJnQb_-hD_2Y4vSdRSiF0jUIMVFyR_nU55xoYx9T6Fx6tgLstgz7WobdlmH3ZUyis731uO6o-Sd5S38CTndAIKJ3jkpiXUl8Aap1jIM</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Lee, Young-Chan</creator><creator>Ko, Doo-Hyeon</creator><creator>Son, Min-Hyeong</creator><creator>Yang, Se-Hwan</creator><creator>Um, Ji-Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2315-9503</orcidid><orcidid>https://orcid.org/0009-0008-8442-2345</orcidid><orcidid>https://orcid.org/0000-0002-0180-0400</orcidid></search><sort><creationdate>20240601</creationdate><title>Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System</title><author>Lee, Young-Chan ; Ko, Doo-Hyeon ; Son, Min-Hyeong ; Yang, Se-Hwan ; Um, Ji-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-878d2c6b053ee06e7474a089578790908d470d03e616b5c4f0b615ce243ca01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analog circuits</topic><topic>Arterial distension monitoring</topic><topic>Biomedical monitoring</topic><topic>Blood pressure</topic><topic>Carotid arteries</topic><topic>Carotid Arteries - diagnostic imaging</topic><topic>Carotid Arteries - physiology</topic><topic>Carotid artery</topic><topic>Distension</topic><topic>field programmable gate array (FPGA)</topic><topic>Field programmable gate arrays</topic><topic>Finite state machines</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Inference</topic><topic>Monitoring</topic><topic>Probes</topic><topic>Resource utilization</topic><topic>Scanners</topic><topic>sequential support vector machine (SVM)</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic scanners</topic><topic>Ultrasonography - instrumentation</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>ultrasound probe positioning</topic><topic>ultrasound scanner</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Young-Chan</creatorcontrib><creatorcontrib>Ko, Doo-Hyeon</creatorcontrib><creatorcontrib>Son, Min-Hyeong</creatorcontrib><creatorcontrib>Yang, Se-Hwan</creatorcontrib><creatorcontrib>Um, Ji-Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Young-Chan</au><au>Ko, Doo-Hyeon</au><au>Son, Min-Hyeong</au><au>Yang, Se-Hwan</au><au>Um, Ji-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>18</volume><issue>3</issue><spage>702</spage><epage>713</epage><pages>702-713</pages><issn>1932-4545</issn><issn>1940-9990</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents an arterial distension monitoring scheme using a field-programmable gate array (FPGA)-based inference machine in an ultrasound scanner circuit system. An arterial distension monitoring requires a precise positioning of an ultrasound probe on an artery as a prerequisite. The proposed arterial distension monitoring scheme is based on a finite state machine that incorporates sequential support vector machines (SVMs) to assist in both coarse and fine adjustments of probe position. The SVMs sequentially perform recognitions of ultrasonic A-mode echo pattern for a human carotid artery. By employing sequential SVMs in combination with convolution and average pooling, the number of features for the inference machine is significantly reduced, resulting in less utilization of hardware resources in FPGA. The proposed arterial distension monitoring scheme was implemented in an FPGA (Artix7) with a resource utilization percentage less than 9.3%. To demonstrate the proposed scheme, we implemented a customized ultrasound scanner consisting of a single-element transducer, an FPGA, and analog interface circuits with discrete chips. In measurements, we set virtual coordinates on a human neck for 9 human subjects. The achieved accuracy of probe positioning inference is 88%, and the Pearson coefficient (r) of arterial distension estimation is 0.838.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38324435</pmid><doi>10.1109/TBCAS.2024.3363134</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2315-9503</orcidid><orcidid>https://orcid.org/0009-0008-8442-2345</orcidid><orcidid>https://orcid.org/0000-0002-0180-0400</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2024-06, Vol.18 (3), p.702-713 |
issn | 1932-4545 1940-9990 1940-9990 |
language | eng |
recordid | cdi_proquest_miscellaneous_2923913749 |
source | IEEE Electronic Library (IEL) |
subjects | Analog circuits Arterial distension monitoring Biomedical monitoring Blood pressure Carotid arteries Carotid Arteries - diagnostic imaging Carotid Arteries - physiology Carotid artery Distension field programmable gate array (FPGA) Field programmable gate arrays Finite state machines Humans Image Processing, Computer-Assisted - methods Inference Monitoring Probes Resource utilization Scanners sequential support vector machine (SVM) Signal Processing, Computer-Assisted - instrumentation Support Vector Machine Support vector machines Ultrasonic imaging Ultrasonic scanners Ultrasonography - instrumentation Ultrasonography - methods Ultrasound ultrasound probe positioning ultrasound scanner |
title | Arterial Distension Monitoring Scheme Using FPGA-Based Inference Machine in Ultrasound Scanner Circuit System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arterial%20Distension%20Monitoring%20Scheme%20Using%20FPGA-Based%20Inference%20Machine%20in%20Ultrasound%20Scanner%20Circuit%20System&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Lee,%20Young-Chan&rft.date=2024-06-01&rft.volume=18&rft.issue=3&rft.spage=702&rft.epage=713&rft.pages=702-713&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2024.3363134&rft_dat=%3Cproquest_RIE%3E3061458011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061458011&rft_id=info:pmid/38324435&rft_ieee_id=10423872&rfr_iscdi=true |