Oriented Molecular Bridge Constructs Homogeneous Buried Interface for Perovskite Solar Cells with Efficiency Over 25.3

Buried interface optimization matters the efficiency improvement of planar perovskite solar cells (PSCs), and the molecular bridge is reported to be an effective approach. Herein, a molecular bridge is constructed at buried interface using 4‐chloro‐3‐sulfamoylbenzoic acid (CSBA), and its preferred a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-04, Vol.36 (16), p.e2310710-n/a
Hauptverfasser: Wang, Xinxin, Huang, Hao, Wang, Min, Lan, Zhineng, Cui, Peng, Du, Shuxian, Yang, Yingying, Yan, Luyao, Zhang, Qiang, Qu, Shujie, Li, Meicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page e2310710
container_title Advanced materials (Weinheim)
container_volume 36
creator Wang, Xinxin
Huang, Hao
Wang, Min
Lan, Zhineng
Cui, Peng
Du, Shuxian
Yang, Yingying
Yan, Luyao
Zhang, Qiang
Qu, Shujie
Li, Meicheng
description Buried interface optimization matters the efficiency improvement of planar perovskite solar cells (PSCs), and the molecular bridge is reported to be an effective approach. Herein, a molecular bridge is constructed at buried interface using 4‐chloro‐3‐sulfamoylbenzoic acid (CSBA), and its preferred arrangement is systematically investigated. It is elucidated that the CSBA molecular is prone to be orientationally absorbed on TiO2 surface through COOH–Ti, and then connect with perovskite through S═O–Pb, resulting in a feasible oriented molecular bridge. Contributing to the passivated interfacial defects, optimized interfacial energy level, and released perovskite tensile stress, resulting from the oriented CSBA molecular bridge, the PSCs with an active area of 0.08 cm2 achieve a certified power conversion efficiency (PCE) of 25.32%, the highest among the TiO2‐based planar PSCs. Encouragingly, the PSCs with an active area of 1 cm2 achieve a champion PCE of 24.20%, significantly promoting the efficiency progress of large‐area PSCs. In addition, the PSCs with oriented CSBA molecular bridge possess enhanced stability, the unencapsulated PSCs can maintain ≈91% and ≈85% of their initial PCE after 3000 h aging under ambient condition and 1200 h aging under exposure to UV irradiation. An oriented molecular bridge is proposed to construct homogeneous buried interface and enhance interfacial carrier transport. The resulting perovskite solar cells (PSCs) with an active area of 0.08 cm2 and 1 cm2 obtain PCEs of 25.32% (certified PCE: 25.32%) and 24.20%, respectively. In addition, the PSCs with oriented molecular bridge also exhibit excellent stability.
doi_str_mv 10.1002/adma.202310710
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2923909648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040208610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-235f095cb592c25776e4bca958b2b3724bdda27f4b14af692516b0f16d470b093</originalsourceid><addsrcrecordid>eNqFkUFPGzEQhS3UqqTQK8fKUi9cNozt9W58DIEWJFCQaM-W7R3Thd0Y7N2g_Ps6DQWpF05z-d6befMIOWIwZQD8xDS9mXLggkHNYI9MmOSsKEHJD2QCSshCVeVsn3xO6R4AVAXVJ7IvZoLXTMoJWS9ji6sBG3odOnRjZyI9jW1zh3QRVmmIoxsSvQh9uMMVhjHR0zErGnqZRdEbh9SHSG8whnV6aAekt2HrscCuS_S5HX7Tc-9bl5e4DV2uMVIup-KQfPSmS_jlZR6QX9_Pfy4uiqvlj8vF_KpwohZQcCF9juKsVNxxWdcVltYZJWeWW1Hz0jaN4bUvLSuNrxSXrLLgWdWUNdgc_4Ac73wfY3gaMQ26b5PLt5m_YTRXXCjYviij3_5D78MYV_k6LaAEDrOKQaamO8rFkFJErx9j25u40Qz0thG9bUS_NpIFX19sR9tj84r_qyADagc8tx1u3rHT87Pr-Zv5H4Uilpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040208610</pqid></control><display><type>article</type><title>Oriented Molecular Bridge Constructs Homogeneous Buried Interface for Perovskite Solar Cells with Efficiency Over 25.3</title><source>Wiley Online Library</source><creator>Wang, Xinxin ; Huang, Hao ; Wang, Min ; Lan, Zhineng ; Cui, Peng ; Du, Shuxian ; Yang, Yingying ; Yan, Luyao ; Zhang, Qiang ; Qu, Shujie ; Li, Meicheng</creator><creatorcontrib>Wang, Xinxin ; Huang, Hao ; Wang, Min ; Lan, Zhineng ; Cui, Peng ; Du, Shuxian ; Yang, Yingying ; Yan, Luyao ; Zhang, Qiang ; Qu, Shujie ; Li, Meicheng</creatorcontrib><description>Buried interface optimization matters the efficiency improvement of planar perovskite solar cells (PSCs), and the molecular bridge is reported to be an effective approach. Herein, a molecular bridge is constructed at buried interface using 4‐chloro‐3‐sulfamoylbenzoic acid (CSBA), and its preferred arrangement is systematically investigated. It is elucidated that the CSBA molecular is prone to be orientationally absorbed on TiO2 surface through COOH–Ti, and then connect with perovskite through S═O–Pb, resulting in a feasible oriented molecular bridge. Contributing to the passivated interfacial defects, optimized interfacial energy level, and released perovskite tensile stress, resulting from the oriented CSBA molecular bridge, the PSCs with an active area of 0.08 cm2 achieve a certified power conversion efficiency (PCE) of 25.32%, the highest among the TiO2‐based planar PSCs. Encouragingly, the PSCs with an active area of 1 cm2 achieve a champion PCE of 24.20%, significantly promoting the efficiency progress of large‐area PSCs. In addition, the PSCs with oriented CSBA molecular bridge possess enhanced stability, the unencapsulated PSCs can maintain ≈91% and ≈85% of their initial PCE after 3000 h aging under ambient condition and 1200 h aging under exposure to UV irradiation. An oriented molecular bridge is proposed to construct homogeneous buried interface and enhance interfacial carrier transport. The resulting perovskite solar cells (PSCs) with an active area of 0.08 cm2 and 1 cm2 obtain PCEs of 25.32% (certified PCE: 25.32%) and 24.20%, respectively. In addition, the PSCs with oriented molecular bridge also exhibit excellent stability.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202310710</identifier><identifier>PMID: 38327155</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bridge maintenance ; buried interface ; Efficiency ; Energy conversion efficiency ; Energy levels ; Interfacial energy ; molecular bridge ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Solar cells ; Tensile stress ; TiO2 ; Titanium dioxide ; Ultraviolet radiation</subject><ispartof>Advanced materials (Weinheim), 2024-04, Vol.36 (16), p.e2310710-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-235f095cb592c25776e4bca958b2b3724bdda27f4b14af692516b0f16d470b093</citedby><cites>FETCH-LOGICAL-c3730-235f095cb592c25776e4bca958b2b3724bdda27f4b14af692516b0f16d470b093</cites><orcidid>0000-0002-0731-741X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202310710$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202310710$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38327155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xinxin</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Lan, Zhineng</creatorcontrib><creatorcontrib>Cui, Peng</creatorcontrib><creatorcontrib>Du, Shuxian</creatorcontrib><creatorcontrib>Yang, Yingying</creatorcontrib><creatorcontrib>Yan, Luyao</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Qu, Shujie</creatorcontrib><creatorcontrib>Li, Meicheng</creatorcontrib><title>Oriented Molecular Bridge Constructs Homogeneous Buried Interface for Perovskite Solar Cells with Efficiency Over 25.3</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Buried interface optimization matters the efficiency improvement of planar perovskite solar cells (PSCs), and the molecular bridge is reported to be an effective approach. Herein, a molecular bridge is constructed at buried interface using 4‐chloro‐3‐sulfamoylbenzoic acid (CSBA), and its preferred arrangement is systematically investigated. It is elucidated that the CSBA molecular is prone to be orientationally absorbed on TiO2 surface through COOH–Ti, and then connect with perovskite through S═O–Pb, resulting in a feasible oriented molecular bridge. Contributing to the passivated interfacial defects, optimized interfacial energy level, and released perovskite tensile stress, resulting from the oriented CSBA molecular bridge, the PSCs with an active area of 0.08 cm2 achieve a certified power conversion efficiency (PCE) of 25.32%, the highest among the TiO2‐based planar PSCs. Encouragingly, the PSCs with an active area of 1 cm2 achieve a champion PCE of 24.20%, significantly promoting the efficiency progress of large‐area PSCs. In addition, the PSCs with oriented CSBA molecular bridge possess enhanced stability, the unencapsulated PSCs can maintain ≈91% and ≈85% of their initial PCE after 3000 h aging under ambient condition and 1200 h aging under exposure to UV irradiation. An oriented molecular bridge is proposed to construct homogeneous buried interface and enhance interfacial carrier transport. The resulting perovskite solar cells (PSCs) with an active area of 0.08 cm2 and 1 cm2 obtain PCEs of 25.32% (certified PCE: 25.32%) and 24.20%, respectively. In addition, the PSCs with oriented molecular bridge also exhibit excellent stability.</description><subject>Bridge maintenance</subject><subject>buried interface</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Interfacial energy</subject><subject>molecular bridge</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Tensile stress</subject><subject>TiO2</subject><subject>Titanium dioxide</subject><subject>Ultraviolet radiation</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUFPGzEQhS3UqqTQK8fKUi9cNozt9W58DIEWJFCQaM-W7R3Thd0Y7N2g_Ps6DQWpF05z-d6befMIOWIwZQD8xDS9mXLggkHNYI9MmOSsKEHJD2QCSshCVeVsn3xO6R4AVAXVJ7IvZoLXTMoJWS9ji6sBG3odOnRjZyI9jW1zh3QRVmmIoxsSvQh9uMMVhjHR0zErGnqZRdEbh9SHSG8whnV6aAekt2HrscCuS_S5HX7Tc-9bl5e4DV2uMVIup-KQfPSmS_jlZR6QX9_Pfy4uiqvlj8vF_KpwohZQcCF9juKsVNxxWdcVltYZJWeWW1Hz0jaN4bUvLSuNrxSXrLLgWdWUNdgc_4Ac73wfY3gaMQ26b5PLt5m_YTRXXCjYviij3_5D78MYV_k6LaAEDrOKQaamO8rFkFJErx9j25u40Qz0thG9bUS_NpIFX19sR9tj84r_qyADagc8tx1u3rHT87Pr-Zv5H4Uilpw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wang, Xinxin</creator><creator>Huang, Hao</creator><creator>Wang, Min</creator><creator>Lan, Zhineng</creator><creator>Cui, Peng</creator><creator>Du, Shuxian</creator><creator>Yang, Yingying</creator><creator>Yan, Luyao</creator><creator>Zhang, Qiang</creator><creator>Qu, Shujie</creator><creator>Li, Meicheng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0731-741X</orcidid></search><sort><creationdate>20240401</creationdate><title>Oriented Molecular Bridge Constructs Homogeneous Buried Interface for Perovskite Solar Cells with Efficiency Over 25.3</title><author>Wang, Xinxin ; Huang, Hao ; Wang, Min ; Lan, Zhineng ; Cui, Peng ; Du, Shuxian ; Yang, Yingying ; Yan, Luyao ; Zhang, Qiang ; Qu, Shujie ; Li, Meicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-235f095cb592c25776e4bca958b2b3724bdda27f4b14af692516b0f16d470b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bridge maintenance</topic><topic>buried interface</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Interfacial energy</topic><topic>molecular bridge</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Tensile stress</topic><topic>TiO2</topic><topic>Titanium dioxide</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinxin</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Lan, Zhineng</creatorcontrib><creatorcontrib>Cui, Peng</creatorcontrib><creatorcontrib>Du, Shuxian</creatorcontrib><creatorcontrib>Yang, Yingying</creatorcontrib><creatorcontrib>Yan, Luyao</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Qu, Shujie</creatorcontrib><creatorcontrib>Li, Meicheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinxin</au><au>Huang, Hao</au><au>Wang, Min</au><au>Lan, Zhineng</au><au>Cui, Peng</au><au>Du, Shuxian</au><au>Yang, Yingying</au><au>Yan, Luyao</au><au>Zhang, Qiang</au><au>Qu, Shujie</au><au>Li, Meicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oriented Molecular Bridge Constructs Homogeneous Buried Interface for Perovskite Solar Cells with Efficiency Over 25.3</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>36</volume><issue>16</issue><spage>e2310710</spage><epage>n/a</epage><pages>e2310710-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Buried interface optimization matters the efficiency improvement of planar perovskite solar cells (PSCs), and the molecular bridge is reported to be an effective approach. Herein, a molecular bridge is constructed at buried interface using 4‐chloro‐3‐sulfamoylbenzoic acid (CSBA), and its preferred arrangement is systematically investigated. It is elucidated that the CSBA molecular is prone to be orientationally absorbed on TiO2 surface through COOH–Ti, and then connect with perovskite through S═O–Pb, resulting in a feasible oriented molecular bridge. Contributing to the passivated interfacial defects, optimized interfacial energy level, and released perovskite tensile stress, resulting from the oriented CSBA molecular bridge, the PSCs with an active area of 0.08 cm2 achieve a certified power conversion efficiency (PCE) of 25.32%, the highest among the TiO2‐based planar PSCs. Encouragingly, the PSCs with an active area of 1 cm2 achieve a champion PCE of 24.20%, significantly promoting the efficiency progress of large‐area PSCs. In addition, the PSCs with oriented CSBA molecular bridge possess enhanced stability, the unencapsulated PSCs can maintain ≈91% and ≈85% of their initial PCE after 3000 h aging under ambient condition and 1200 h aging under exposure to UV irradiation. An oriented molecular bridge is proposed to construct homogeneous buried interface and enhance interfacial carrier transport. The resulting perovskite solar cells (PSCs) with an active area of 0.08 cm2 and 1 cm2 obtain PCEs of 25.32% (certified PCE: 25.32%) and 24.20%, respectively. In addition, the PSCs with oriented molecular bridge also exhibit excellent stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38327155</pmid><doi>10.1002/adma.202310710</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0731-741X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-04, Vol.36 (16), p.e2310710-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2923909648
source Wiley Online Library
subjects Bridge maintenance
buried interface
Efficiency
Energy conversion efficiency
Energy levels
Interfacial energy
molecular bridge
perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
Tensile stress
TiO2
Titanium dioxide
Ultraviolet radiation
title Oriented Molecular Bridge Constructs Homogeneous Buried Interface for Perovskite Solar Cells with Efficiency Over 25.3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oriented%20Molecular%20Bridge%20Constructs%20Homogeneous%20Buried%20Interface%20for%20Perovskite%20Solar%20Cells%20with%20Efficiency%20Over%2025.3&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Xinxin&rft.date=2024-04-01&rft.volume=36&rft.issue=16&rft.spage=e2310710&rft.epage=n/a&rft.pages=e2310710-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202310710&rft_dat=%3Cproquest_cross%3E3040208610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040208610&rft_id=info:pmid/38327155&rfr_iscdi=true