Monitoring damage evolution in thermal barrier coatings with thermal wave imaging
Thermal wave imaging (TWI) is a promising non-destructive evaluation (NDE) technique with the ability to detect integrity and thickness of thermal barrier coatings (TBCs) extensively used for advanced gas turbine engines. Development of a robust NDE technique is essential for quality control, life a...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2005-11, Vol.200 (5), p.1292-1297 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1297 |
---|---|
container_issue | 5 |
container_start_page | 1292 |
container_title | Surface & coatings technology |
container_volume | 200 |
creator | Franke, B. Sohn, Y.H. Chen, X. Price, J.R. Mutasim, Z. |
description | Thermal wave imaging (TWI) is a promising non-destructive evaluation (NDE) technique with the ability to detect integrity and thickness of thermal barrier coatings (TBCs) extensively used for advanced gas turbine engines. Development of a robust NDE technique is essential for quality control, life assessment, and health monitoring of TBCs for applications, maintenance, and prevention of catastrophic failure. In this study, TWI was employed as an NDE technique to examine as-coated TBCs with varying thicknesses, and thermally cycled TBCs for initiation and progression of subcritical–subsurface damage as a function of thermal cycling. TBC specimens examined consisted of air plasma sprayed ZrO
2–7 wt.% Y
2O
3, NiCoCrAlY bond coats and Haynes 230 superalloy. Thermal cycling was carried out in air with 30-min heat-up, 10-h dwell at 1150 °C, 30-min air-quench and 1-h hold at room temperature. During thermal cycling, TBC specimens were evaluated non-destructively with TWI at room temperature every 10 to 20 thermal cycles, and selected specimens were removed from thermal cycling for microstructural analysis by scanning electron microscopy (SEM). TWI analysis was correlated to the microstructural characteristics and damage progression of TBCs based on phenomenological expressions of thermal diffusion. Higher thermal response amplitude associated with disrupted heat transfer was observed where localized spallation at or near the YSZ/TGO interface occurred. |
doi_str_mv | 10.1016/j.surfcoat.2005.07.090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29237394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897205007929</els_id><sourcerecordid>28698752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-5d9fe3cfc0dccd337cf574a7edc177325bb636a20bb1699d5dda690fad9268693</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM7cSudyDESypCSLC2HNtpXaVxsZNW_D2uWmDZ1Szm3Lmag9AlhgIDZjeLIg6h0V71BQGoCuAFCDhCIzzhIqe05MdoBKTi-URwcorOYlwAAOaiHKH3V9-53gfXzTKjlmpmM7v27dA732Wuy_q5DUvVZrUKwdmQbWsSG7ON6-d_241a28yldFqdo5NGtdFe7OcYfT4-fNw_59O3p5f7u2muSyj7vDKisVQ3GozWhlKum4qXilujMeeUVHXNKFME6hozIUxljGICGmUEYRMm6Bhd7-6ugv8abOzl0kVt21Z11g9REkEop6I8DKZrE16RBLIdqIOPMdhGrkJ6KnxLDHKrWi7kr2q5VS2By6Q6Ba_2DSpq1TZBddrF_zQvRUkAJ-52x9nkZZ10yqid7bQ1LljdS-PdoaofD2aZ7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28698752</pqid></control><display><type>article</type><title>Monitoring damage evolution in thermal barrier coatings with thermal wave imaging</title><source>Access via ScienceDirect (Elsevier)</source><creator>Franke, B. ; Sohn, Y.H. ; Chen, X. ; Price, J.R. ; Mutasim, Z.</creator><creatorcontrib>Franke, B. ; Sohn, Y.H. ; Chen, X. ; Price, J.R. ; Mutasim, Z.</creatorcontrib><description>Thermal wave imaging (TWI) is a promising non-destructive evaluation (NDE) technique with the ability to detect integrity and thickness of thermal barrier coatings (TBCs) extensively used for advanced gas turbine engines. Development of a robust NDE technique is essential for quality control, life assessment, and health monitoring of TBCs for applications, maintenance, and prevention of catastrophic failure. In this study, TWI was employed as an NDE technique to examine as-coated TBCs with varying thicknesses, and thermally cycled TBCs for initiation and progression of subcritical–subsurface damage as a function of thermal cycling. TBC specimens examined consisted of air plasma sprayed ZrO
2–7 wt.% Y
2O
3, NiCoCrAlY bond coats and Haynes 230 superalloy. Thermal cycling was carried out in air with 30-min heat-up, 10-h dwell at 1150 °C, 30-min air-quench and 1-h hold at room temperature. During thermal cycling, TBC specimens were evaluated non-destructively with TWI at room temperature every 10 to 20 thermal cycles, and selected specimens were removed from thermal cycling for microstructural analysis by scanning electron microscopy (SEM). TWI analysis was correlated to the microstructural characteristics and damage progression of TBCs based on phenomenological expressions of thermal diffusion. Higher thermal response amplitude associated with disrupted heat transfer was observed where localized spallation at or near the YSZ/TGO interface occurred.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2005.07.090</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Metals. Metallurgy ; Microstructure ; Non-destructive evaluation ; Nonmetallic coatings ; Other topics in materials science ; Physics ; Plasma spray ; Production techniques ; Surface treatment ; Thermal barrier coatings ; Thermal wave imaging</subject><ispartof>Surface & coatings technology, 2005-11, Vol.200 (5), p.1292-1297</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-5d9fe3cfc0dccd337cf574a7edc177325bb636a20bb1699d5dda690fad9268693</citedby><cites>FETCH-LOGICAL-c404t-5d9fe3cfc0dccd337cf574a7edc177325bb636a20bb1699d5dda690fad9268693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2005.07.090$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17494201$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Franke, B.</creatorcontrib><creatorcontrib>Sohn, Y.H.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Price, J.R.</creatorcontrib><creatorcontrib>Mutasim, Z.</creatorcontrib><title>Monitoring damage evolution in thermal barrier coatings with thermal wave imaging</title><title>Surface & coatings technology</title><description>Thermal wave imaging (TWI) is a promising non-destructive evaluation (NDE) technique with the ability to detect integrity and thickness of thermal barrier coatings (TBCs) extensively used for advanced gas turbine engines. Development of a robust NDE technique is essential for quality control, life assessment, and health monitoring of TBCs for applications, maintenance, and prevention of catastrophic failure. In this study, TWI was employed as an NDE technique to examine as-coated TBCs with varying thicknesses, and thermally cycled TBCs for initiation and progression of subcritical–subsurface damage as a function of thermal cycling. TBC specimens examined consisted of air plasma sprayed ZrO
2–7 wt.% Y
2O
3, NiCoCrAlY bond coats and Haynes 230 superalloy. Thermal cycling was carried out in air with 30-min heat-up, 10-h dwell at 1150 °C, 30-min air-quench and 1-h hold at room temperature. During thermal cycling, TBC specimens were evaluated non-destructively with TWI at room temperature every 10 to 20 thermal cycles, and selected specimens were removed from thermal cycling for microstructural analysis by scanning electron microscopy (SEM). TWI analysis was correlated to the microstructural characteristics and damage progression of TBCs based on phenomenological expressions of thermal diffusion. Higher thermal response amplitude associated with disrupted heat transfer was observed where localized spallation at or near the YSZ/TGO interface occurred.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Non-destructive evaluation</subject><subject>Nonmetallic coatings</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Plasma spray</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Thermal barrier coatings</subject><subject>Thermal wave imaging</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM7cSudyDESypCSLC2HNtpXaVxsZNW_D2uWmDZ1Szm3Lmag9AlhgIDZjeLIg6h0V71BQGoCuAFCDhCIzzhIqe05MdoBKTi-URwcorOYlwAAOaiHKH3V9-53gfXzTKjlmpmM7v27dA732Wuy_q5DUvVZrUKwdmQbWsSG7ON6-d_241a28yldFqdo5NGtdFe7OcYfT4-fNw_59O3p5f7u2muSyj7vDKisVQ3GozWhlKum4qXilujMeeUVHXNKFME6hozIUxljGICGmUEYRMm6Bhd7-6ugv8abOzl0kVt21Z11g9REkEop6I8DKZrE16RBLIdqIOPMdhGrkJ6KnxLDHKrWi7kr2q5VS2By6Q6Ba_2DSpq1TZBddrF_zQvRUkAJ-52x9nkZZ10yqid7bQ1LljdS-PdoaofD2aZ7g</recordid><startdate>20051121</startdate><enddate>20051121</enddate><creator>Franke, B.</creator><creator>Sohn, Y.H.</creator><creator>Chen, X.</creator><creator>Price, J.R.</creator><creator>Mutasim, Z.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20051121</creationdate><title>Monitoring damage evolution in thermal barrier coatings with thermal wave imaging</title><author>Franke, B. ; Sohn, Y.H. ; Chen, X. ; Price, J.R. ; Mutasim, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-5d9fe3cfc0dccd337cf574a7edc177325bb636a20bb1699d5dda690fad9268693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Non-destructive evaluation</topic><topic>Nonmetallic coatings</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Plasma spray</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Thermal barrier coatings</topic><topic>Thermal wave imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franke, B.</creatorcontrib><creatorcontrib>Sohn, Y.H.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Price, J.R.</creatorcontrib><creatorcontrib>Mutasim, Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franke, B.</au><au>Sohn, Y.H.</au><au>Chen, X.</au><au>Price, J.R.</au><au>Mutasim, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring damage evolution in thermal barrier coatings with thermal wave imaging</atitle><jtitle>Surface & coatings technology</jtitle><date>2005-11-21</date><risdate>2005</risdate><volume>200</volume><issue>5</issue><spage>1292</spage><epage>1297</epage><pages>1292-1297</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Thermal wave imaging (TWI) is a promising non-destructive evaluation (NDE) technique with the ability to detect integrity and thickness of thermal barrier coatings (TBCs) extensively used for advanced gas turbine engines. Development of a robust NDE technique is essential for quality control, life assessment, and health monitoring of TBCs for applications, maintenance, and prevention of catastrophic failure. In this study, TWI was employed as an NDE technique to examine as-coated TBCs with varying thicknesses, and thermally cycled TBCs for initiation and progression of subcritical–subsurface damage as a function of thermal cycling. TBC specimens examined consisted of air plasma sprayed ZrO
2–7 wt.% Y
2O
3, NiCoCrAlY bond coats and Haynes 230 superalloy. Thermal cycling was carried out in air with 30-min heat-up, 10-h dwell at 1150 °C, 30-min air-quench and 1-h hold at room temperature. During thermal cycling, TBC specimens were evaluated non-destructively with TWI at room temperature every 10 to 20 thermal cycles, and selected specimens were removed from thermal cycling for microstructural analysis by scanning electron microscopy (SEM). TWI analysis was correlated to the microstructural characteristics and damage progression of TBCs based on phenomenological expressions of thermal diffusion. Higher thermal response amplitude associated with disrupted heat transfer was observed where localized spallation at or near the YSZ/TGO interface occurred.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2005.07.090</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2005-11, Vol.200 (5), p.1292-1297 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_29237394 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Metals. Metallurgy Microstructure Non-destructive evaluation Nonmetallic coatings Other topics in materials science Physics Plasma spray Production techniques Surface treatment Thermal barrier coatings Thermal wave imaging |
title | Monitoring damage evolution in thermal barrier coatings with thermal wave imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20damage%20evolution%20in%20thermal%20barrier%20coatings%20with%20thermal%20wave%20imaging&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Franke,%20B.&rft.date=2005-11-21&rft.volume=200&rft.issue=5&rft.spage=1292&rft.epage=1297&rft.pages=1292-1297&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2005.07.090&rft_dat=%3Cproquest_cross%3E28698752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28698752&rft_id=info:pmid/&rft_els_id=S0257897205007929&rfr_iscdi=true |