Monitoring damage evolution in thermal barrier coatings with thermal wave imaging

Thermal wave imaging (TWI) is a promising non-destructive evaluation (NDE) technique with the ability to detect integrity and thickness of thermal barrier coatings (TBCs) extensively used for advanced gas turbine engines. Development of a robust NDE technique is essential for quality control, life a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2005-11, Vol.200 (5), p.1292-1297
Hauptverfasser: Franke, B., Sohn, Y.H., Chen, X., Price, J.R., Mutasim, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1297
container_issue 5
container_start_page 1292
container_title Surface & coatings technology
container_volume 200
creator Franke, B.
Sohn, Y.H.
Chen, X.
Price, J.R.
Mutasim, Z.
description Thermal wave imaging (TWI) is a promising non-destructive evaluation (NDE) technique with the ability to detect integrity and thickness of thermal barrier coatings (TBCs) extensively used for advanced gas turbine engines. Development of a robust NDE technique is essential for quality control, life assessment, and health monitoring of TBCs for applications, maintenance, and prevention of catastrophic failure. In this study, TWI was employed as an NDE technique to examine as-coated TBCs with varying thicknesses, and thermally cycled TBCs for initiation and progression of subcritical–subsurface damage as a function of thermal cycling. TBC specimens examined consisted of air plasma sprayed ZrO 2–7 wt.% Y 2O 3, NiCoCrAlY bond coats and Haynes 230 superalloy. Thermal cycling was carried out in air with 30-min heat-up, 10-h dwell at 1150 °C, 30-min air-quench and 1-h hold at room temperature. During thermal cycling, TBC specimens were evaluated non-destructively with TWI at room temperature every 10 to 20 thermal cycles, and selected specimens were removed from thermal cycling for microstructural analysis by scanning electron microscopy (SEM). TWI analysis was correlated to the microstructural characteristics and damage progression of TBCs based on phenomenological expressions of thermal diffusion. Higher thermal response amplitude associated with disrupted heat transfer was observed where localized spallation at or near the YSZ/TGO interface occurred.
doi_str_mv 10.1016/j.surfcoat.2005.07.090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29237394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897205007929</els_id><sourcerecordid>28698752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-5d9fe3cfc0dccd337cf574a7edc177325bb636a20bb1699d5dda690fad9268693</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM7cSudyDESypCSLC2HNtpXaVxsZNW_D2uWmDZ1Szm3Lmag9AlhgIDZjeLIg6h0V71BQGoCuAFCDhCIzzhIqe05MdoBKTi-URwcorOYlwAAOaiHKH3V9-53gfXzTKjlmpmM7v27dA732Wuy_q5DUvVZrUKwdmQbWsSG7ON6-d_241a28yldFqdo5NGtdFe7OcYfT4-fNw_59O3p5f7u2muSyj7vDKisVQ3GozWhlKum4qXilujMeeUVHXNKFME6hozIUxljGICGmUEYRMm6Bhd7-6ugv8abOzl0kVt21Z11g9REkEop6I8DKZrE16RBLIdqIOPMdhGrkJ6KnxLDHKrWi7kr2q5VS2By6Q6Ba_2DSpq1TZBddrF_zQvRUkAJ-52x9nkZZ10yqid7bQ1LljdS-PdoaofD2aZ7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28698752</pqid></control><display><type>article</type><title>Monitoring damage evolution in thermal barrier coatings with thermal wave imaging</title><source>Access via ScienceDirect (Elsevier)</source><creator>Franke, B. ; Sohn, Y.H. ; Chen, X. ; Price, J.R. ; Mutasim, Z.</creator><creatorcontrib>Franke, B. ; Sohn, Y.H. ; Chen, X. ; Price, J.R. ; Mutasim, Z.</creatorcontrib><description>Thermal wave imaging (TWI) is a promising non-destructive evaluation (NDE) technique with the ability to detect integrity and thickness of thermal barrier coatings (TBCs) extensively used for advanced gas turbine engines. Development of a robust NDE technique is essential for quality control, life assessment, and health monitoring of TBCs for applications, maintenance, and prevention of catastrophic failure. In this study, TWI was employed as an NDE technique to examine as-coated TBCs with varying thicknesses, and thermally cycled TBCs for initiation and progression of subcritical–subsurface damage as a function of thermal cycling. TBC specimens examined consisted of air plasma sprayed ZrO 2–7 wt.% Y 2O 3, NiCoCrAlY bond coats and Haynes 230 superalloy. Thermal cycling was carried out in air with 30-min heat-up, 10-h dwell at 1150 °C, 30-min air-quench and 1-h hold at room temperature. During thermal cycling, TBC specimens were evaluated non-destructively with TWI at room temperature every 10 to 20 thermal cycles, and selected specimens were removed from thermal cycling for microstructural analysis by scanning electron microscopy (SEM). TWI analysis was correlated to the microstructural characteristics and damage progression of TBCs based on phenomenological expressions of thermal diffusion. Higher thermal response amplitude associated with disrupted heat transfer was observed where localized spallation at or near the YSZ/TGO interface occurred.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2005.07.090</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Metals. Metallurgy ; Microstructure ; Non-destructive evaluation ; Nonmetallic coatings ; Other topics in materials science ; Physics ; Plasma spray ; Production techniques ; Surface treatment ; Thermal barrier coatings ; Thermal wave imaging</subject><ispartof>Surface &amp; coatings technology, 2005-11, Vol.200 (5), p.1292-1297</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-5d9fe3cfc0dccd337cf574a7edc177325bb636a20bb1699d5dda690fad9268693</citedby><cites>FETCH-LOGICAL-c404t-5d9fe3cfc0dccd337cf574a7edc177325bb636a20bb1699d5dda690fad9268693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2005.07.090$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17494201$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Franke, B.</creatorcontrib><creatorcontrib>Sohn, Y.H.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Price, J.R.</creatorcontrib><creatorcontrib>Mutasim, Z.</creatorcontrib><title>Monitoring damage evolution in thermal barrier coatings with thermal wave imaging</title><title>Surface &amp; coatings technology</title><description>Thermal wave imaging (TWI) is a promising non-destructive evaluation (NDE) technique with the ability to detect integrity and thickness of thermal barrier coatings (TBCs) extensively used for advanced gas turbine engines. Development of a robust NDE technique is essential for quality control, life assessment, and health monitoring of TBCs for applications, maintenance, and prevention of catastrophic failure. In this study, TWI was employed as an NDE technique to examine as-coated TBCs with varying thicknesses, and thermally cycled TBCs for initiation and progression of subcritical–subsurface damage as a function of thermal cycling. TBC specimens examined consisted of air plasma sprayed ZrO 2–7 wt.% Y 2O 3, NiCoCrAlY bond coats and Haynes 230 superalloy. Thermal cycling was carried out in air with 30-min heat-up, 10-h dwell at 1150 °C, 30-min air-quench and 1-h hold at room temperature. During thermal cycling, TBC specimens were evaluated non-destructively with TWI at room temperature every 10 to 20 thermal cycles, and selected specimens were removed from thermal cycling for microstructural analysis by scanning electron microscopy (SEM). TWI analysis was correlated to the microstructural characteristics and damage progression of TBCs based on phenomenological expressions of thermal diffusion. Higher thermal response amplitude associated with disrupted heat transfer was observed where localized spallation at or near the YSZ/TGO interface occurred.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Non-destructive evaluation</subject><subject>Nonmetallic coatings</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Plasma spray</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Thermal barrier coatings</subject><subject>Thermal wave imaging</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCygb2CWM7cSudyDESypCSLC2HNtpXaVxsZNW_D2uWmDZ1Szm3Lmag9AlhgIDZjeLIg6h0V71BQGoCuAFCDhCIzzhIqe05MdoBKTi-URwcorOYlwAAOaiHKH3V9-53gfXzTKjlmpmM7v27dA732Wuy_q5DUvVZrUKwdmQbWsSG7ON6-d_241a28yldFqdo5NGtdFe7OcYfT4-fNw_59O3p5f7u2muSyj7vDKisVQ3GozWhlKum4qXilujMeeUVHXNKFME6hozIUxljGICGmUEYRMm6Bhd7-6ugv8abOzl0kVt21Z11g9REkEop6I8DKZrE16RBLIdqIOPMdhGrkJ6KnxLDHKrWi7kr2q5VS2By6Q6Ba_2DSpq1TZBddrF_zQvRUkAJ-52x9nkZZ10yqid7bQ1LljdS-PdoaofD2aZ7g</recordid><startdate>20051121</startdate><enddate>20051121</enddate><creator>Franke, B.</creator><creator>Sohn, Y.H.</creator><creator>Chen, X.</creator><creator>Price, J.R.</creator><creator>Mutasim, Z.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20051121</creationdate><title>Monitoring damage evolution in thermal barrier coatings with thermal wave imaging</title><author>Franke, B. ; Sohn, Y.H. ; Chen, X. ; Price, J.R. ; Mutasim, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-5d9fe3cfc0dccd337cf574a7edc177325bb636a20bb1699d5dda690fad9268693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Non-destructive evaluation</topic><topic>Nonmetallic coatings</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Plasma spray</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Thermal barrier coatings</topic><topic>Thermal wave imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franke, B.</creatorcontrib><creatorcontrib>Sohn, Y.H.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Price, J.R.</creatorcontrib><creatorcontrib>Mutasim, Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franke, B.</au><au>Sohn, Y.H.</au><au>Chen, X.</au><au>Price, J.R.</au><au>Mutasim, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring damage evolution in thermal barrier coatings with thermal wave imaging</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2005-11-21</date><risdate>2005</risdate><volume>200</volume><issue>5</issue><spage>1292</spage><epage>1297</epage><pages>1292-1297</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Thermal wave imaging (TWI) is a promising non-destructive evaluation (NDE) technique with the ability to detect integrity and thickness of thermal barrier coatings (TBCs) extensively used for advanced gas turbine engines. Development of a robust NDE technique is essential for quality control, life assessment, and health monitoring of TBCs for applications, maintenance, and prevention of catastrophic failure. In this study, TWI was employed as an NDE technique to examine as-coated TBCs with varying thicknesses, and thermally cycled TBCs for initiation and progression of subcritical–subsurface damage as a function of thermal cycling. TBC specimens examined consisted of air plasma sprayed ZrO 2–7 wt.% Y 2O 3, NiCoCrAlY bond coats and Haynes 230 superalloy. Thermal cycling was carried out in air with 30-min heat-up, 10-h dwell at 1150 °C, 30-min air-quench and 1-h hold at room temperature. During thermal cycling, TBC specimens were evaluated non-destructively with TWI at room temperature every 10 to 20 thermal cycles, and selected specimens were removed from thermal cycling for microstructural analysis by scanning electron microscopy (SEM). TWI analysis was correlated to the microstructural characteristics and damage progression of TBCs based on phenomenological expressions of thermal diffusion. Higher thermal response amplitude associated with disrupted heat transfer was observed where localized spallation at or near the YSZ/TGO interface occurred.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2005.07.090</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2005-11, Vol.200 (5), p.1292-1297
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_29237394
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Metals. Metallurgy
Microstructure
Non-destructive evaluation
Nonmetallic coatings
Other topics in materials science
Physics
Plasma spray
Production techniques
Surface treatment
Thermal barrier coatings
Thermal wave imaging
title Monitoring damage evolution in thermal barrier coatings with thermal wave imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20damage%20evolution%20in%20thermal%20barrier%20coatings%20with%20thermal%20wave%20imaging&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Franke,%20B.&rft.date=2005-11-21&rft.volume=200&rft.issue=5&rft.spage=1292&rft.epage=1297&rft.pages=1292-1297&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2005.07.090&rft_dat=%3Cproquest_cross%3E28698752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28698752&rft_id=info:pmid/&rft_els_id=S0257897205007929&rfr_iscdi=true