Ice sensors for wind turbines
A review of ice sensor technology and the challenges for icing detection for wind turbines was performed. A total of 29 different methods for detection of icing were found, and these were then compared with a list of some basic requirements for an icing sensor for wind turbine applications. No repor...
Gespeichert in:
Veröffentlicht in: | Cold regions science and technology 2006-11, Vol.46 (2), p.125-131 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 2 |
container_start_page | 125 |
container_title | Cold regions science and technology |
container_volume | 46 |
creator | Homola, Matthew C. Nicklasson, Per J. Sundsbø, Per A. |
description | A review of ice sensor technology and the challenges for icing detection for wind turbines was performed. A total of 29 different methods for detection of icing were found, and these were then compared with a list of some basic requirements for an icing sensor for wind turbine applications. No reports of ice sensors performing satisfactorily were found, but the sensing methods using infrared spectroscopy through fiber optic cables, a flexible resonating diaphragm, ultrasound from inside the blade or a capacitance, inductance or impedance based sensor seem best suited for wind turbine icing detection. |
doi_str_mv | 10.1016/j.coldregions.2006.06.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29236831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165232X06000760</els_id><sourcerecordid>19348973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-bbf2d34eaf36ae09ecb5c8c0b992910c86c67de37d408d78254d1a027d1f33e3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-BKEe9Naaj7ZJjrL4BQte9uAtpMlUsnSbNdNV_Pe27ILeFF4YBp55Bx5CrhgtGGX17bpwsfMJ3kLsseCU1sUUWh2RGVOS57Is2TGZjWyVc8FfT8kZ4pqOu67EjFw-O8gQeowJszam7DP0Pht2qQk94Dk5aW2HcHGYc7J6uF8tnvLly-Pz4m6Zu5KJIW-alntRgm1FbYFqcE3llKON1lwz6lTtaulBSF9S5aXiVemZpVx61goBYk5u9rXbFN93gIPZBHTQdbaHuEPDNRe1EuxPkGlRKi3FCOo96FJETNCabQobm74Mo2YSZ9bmlzgziTNTaDXeXh-eWHS2a5PtXcCfAsWprKQeucWeg9HMR4Bk0AXoHfiQwA3Gx_CPb9_NIYjW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19348973</pqid></control><display><type>article</type><title>Ice sensors for wind turbines</title><source>Access via ScienceDirect (Elsevier)</source><creator>Homola, Matthew C. ; Nicklasson, Per J. ; Sundsbø, Per A.</creator><creatorcontrib>Homola, Matthew C. ; Nicklasson, Per J. ; Sundsbø, Per A.</creatorcontrib><description>A review of ice sensor technology and the challenges for icing detection for wind turbines was performed. A total of 29 different methods for detection of icing were found, and these were then compared with a list of some basic requirements for an icing sensor for wind turbine applications. No reports of ice sensors performing satisfactorily were found, but the sensing methods using infrared spectroscopy through fiber optic cables, a flexible resonating diaphragm, ultrasound from inside the blade or a capacitance, inductance or impedance based sensor seem best suited for wind turbine icing detection.</description><identifier>ISSN: 0165-232X</identifier><identifier>EISSN: 1872-7441</identifier><identifier>DOI: 10.1016/j.coldregions.2006.06.005</identifier><identifier>CODEN: CRSTDL</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Atmospheric ice ; Energy ; Exact sciences and technology ; Glaze ; Ice ; Ice accretion ; Icing ; Natural energy ; Rime ; Wind energy ; Wind turbine</subject><ispartof>Cold regions science and technology, 2006-11, Vol.46 (2), p.125-131</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-bbf2d34eaf36ae09ecb5c8c0b992910c86c67de37d408d78254d1a027d1f33e3</citedby><cites>FETCH-LOGICAL-c413t-bbf2d34eaf36ae09ecb5c8c0b992910c86c67de37d408d78254d1a027d1f33e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.coldregions.2006.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18207579$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Homola, Matthew C.</creatorcontrib><creatorcontrib>Nicklasson, Per J.</creatorcontrib><creatorcontrib>Sundsbø, Per A.</creatorcontrib><title>Ice sensors for wind turbines</title><title>Cold regions science and technology</title><description>A review of ice sensor technology and the challenges for icing detection for wind turbines was performed. A total of 29 different methods for detection of icing were found, and these were then compared with a list of some basic requirements for an icing sensor for wind turbine applications. No reports of ice sensors performing satisfactorily were found, but the sensing methods using infrared spectroscopy through fiber optic cables, a flexible resonating diaphragm, ultrasound from inside the blade or a capacitance, inductance or impedance based sensor seem best suited for wind turbine icing detection.</description><subject>Applied sciences</subject><subject>Atmospheric ice</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Glaze</subject><subject>Ice</subject><subject>Ice accretion</subject><subject>Icing</subject><subject>Natural energy</subject><subject>Rime</subject><subject>Wind energy</subject><subject>Wind turbine</subject><issn>0165-232X</issn><issn>1872-7441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-BKEe9Naaj7ZJjrL4BQte9uAtpMlUsnSbNdNV_Pe27ILeFF4YBp55Bx5CrhgtGGX17bpwsfMJ3kLsseCU1sUUWh2RGVOS57Is2TGZjWyVc8FfT8kZ4pqOu67EjFw-O8gQeowJszam7DP0Pht2qQk94Dk5aW2HcHGYc7J6uF8tnvLly-Pz4m6Zu5KJIW-alntRgm1FbYFqcE3llKON1lwz6lTtaulBSF9S5aXiVemZpVx61goBYk5u9rXbFN93gIPZBHTQdbaHuEPDNRe1EuxPkGlRKi3FCOo96FJETNCabQobm74Mo2YSZ9bmlzgziTNTaDXeXh-eWHS2a5PtXcCfAsWprKQeucWeg9HMR4Bk0AXoHfiQwA3Gx_CPb9_NIYjW</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Homola, Matthew C.</creator><creator>Nicklasson, Per J.</creator><creator>Sundsbø, Per A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20061101</creationdate><title>Ice sensors for wind turbines</title><author>Homola, Matthew C. ; Nicklasson, Per J. ; Sundsbø, Per A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-bbf2d34eaf36ae09ecb5c8c0b992910c86c67de37d408d78254d1a027d1f33e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Atmospheric ice</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Glaze</topic><topic>Ice</topic><topic>Ice accretion</topic><topic>Icing</topic><topic>Natural energy</topic><topic>Rime</topic><topic>Wind energy</topic><topic>Wind turbine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homola, Matthew C.</creatorcontrib><creatorcontrib>Nicklasson, Per J.</creatorcontrib><creatorcontrib>Sundsbø, Per A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cold regions science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Homola, Matthew C.</au><au>Nicklasson, Per J.</au><au>Sundsbø, Per A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice sensors for wind turbines</atitle><jtitle>Cold regions science and technology</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>46</volume><issue>2</issue><spage>125</spage><epage>131</epage><pages>125-131</pages><issn>0165-232X</issn><eissn>1872-7441</eissn><coden>CRSTDL</coden><abstract>A review of ice sensor technology and the challenges for icing detection for wind turbines was performed. A total of 29 different methods for detection of icing were found, and these were then compared with a list of some basic requirements for an icing sensor for wind turbine applications. No reports of ice sensors performing satisfactorily were found, but the sensing methods using infrared spectroscopy through fiber optic cables, a flexible resonating diaphragm, ultrasound from inside the blade or a capacitance, inductance or impedance based sensor seem best suited for wind turbine icing detection.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.coldregions.2006.06.005</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-232X |
ispartof | Cold regions science and technology, 2006-11, Vol.46 (2), p.125-131 |
issn | 0165-232X 1872-7441 |
language | eng |
recordid | cdi_proquest_miscellaneous_29236831 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Atmospheric ice Energy Exact sciences and technology Glaze Ice Ice accretion Icing Natural energy Rime Wind energy Wind turbine |
title | Ice sensors for wind turbines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice%20sensors%20for%20wind%20turbines&rft.jtitle=Cold%20regions%20science%20and%20technology&rft.au=Homola,%20Matthew%20C.&rft.date=2006-11-01&rft.volume=46&rft.issue=2&rft.spage=125&rft.epage=131&rft.pages=125-131&rft.issn=0165-232X&rft.eissn=1872-7441&rft.coden=CRSTDL&rft_id=info:doi/10.1016/j.coldregions.2006.06.005&rft_dat=%3Cproquest_cross%3E19348973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19348973&rft_id=info:pmid/&rft_els_id=S0165232X06000760&rfr_iscdi=true |