Identification of modal parameters from measured input and output data using a vector backward auto-regressive with exogeneous model

This paper proposes a modal identification system based on vector backward auto-regressive with exogeneous (VBARX) model. The model is an extension of vector backward auto-regressive (VBAR). Both the backward models offer the same benefits in selecting physical modes, since both can provide a determ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2004-09, Vol.276 (3), p.1043-1063
Hauptverfasser: Hung, Chen-Far, Ko, Wen-Jiunn, Peng, Yen-Tun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1063
container_issue 3
container_start_page 1043
container_title Journal of sound and vibration
container_volume 276
creator Hung, Chen-Far
Ko, Wen-Jiunn
Peng, Yen-Tun
description This paper proposes a modal identification system based on vector backward auto-regressive with exogeneous (VBARX) model. The model is an extension of vector backward auto-regressive (VBAR). Both the backward models offer the same benefits in selecting physical modes, since both can provide a determinate boundary that separates system modes from spurious modes. The VBAR model can identify the structural parameters from only output data. In some circumstances, if the input data are available, the extended model, VBARX model, provides an additional advantage over the VBAR model. In this study, an equivalent state-space model derived from measured input and output data is transformed from the VBARX model. Consequently, the structural modal parameters can be estimated accurately using the equivalent state-space model. Two examples of modal identification are presented to demonstrate the availability and effectiveness of the proposed VBARX method. (1) Numerical data simulated in a 3-d.o.f. dynamic system with various types of input data and various noise levels. (2) Experimental data obtained from the National Center for Research on Earthquake Engineering (NCREE) in Taiwan, concerning five-story 1 2 -scale steel structure under a shaking table test.
doi_str_mv 10.1016/j.jsv.2003.08.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29235672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X03009854</els_id><sourcerecordid>29235672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-b224247fb26b92122675352a45c6698a1fddc2c65cfac5b0f105ec9a786ca74e3</originalsourceid><addsrcrecordid>eNp9kD2P1DAQhi0EEsvBD6BzA13C2ImdRFToxMFJJ9GARGdN7PHiJYkX29mDnh9Olj2JjmqmeD9mHsZeCqgFCP3mUB_yqZYATQ19DRIesZ2AQVW90v1jtgOQsmo1fH3KnuV8AIChbdod-33raCnBB4slxIVHz-focOJHTDhToZS5T3HmM2FeEzkeluNaOC6Ox7WcV4cF-ZrDsufIT2RLTHxE-_0ek-O4llgl2ifKOZyI34fyjdPPuKeF4prPZTQ9Z088TplePMwr9uXm_efrj9Xdpw-31-_uKtsoXapRyla2nR-lHgcppNSdapTEVlmthx6Fd85Kq5X1aNUIXoAiO2DXa4tdS80Ve33JPab4Y6VczByypWnCv8cYOcitqJObUFyENsWcE3lzTGHG9MsIMGfe5mA23ubM20BvNt6b59VDOGaLk0-42JD_GTXIduj1pnt70dH26SlQMtkGWiy5kDZ4xsXwn5Y_gHKY4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29235672</pqid></control><display><type>article</type><title>Identification of modal parameters from measured input and output data using a vector backward auto-regressive with exogeneous model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hung, Chen-Far ; Ko, Wen-Jiunn ; Peng, Yen-Tun</creator><creatorcontrib>Hung, Chen-Far ; Ko, Wen-Jiunn ; Peng, Yen-Tun</creatorcontrib><description>This paper proposes a modal identification system based on vector backward auto-regressive with exogeneous (VBARX) model. The model is an extension of vector backward auto-regressive (VBAR). Both the backward models offer the same benefits in selecting physical modes, since both can provide a determinate boundary that separates system modes from spurious modes. The VBAR model can identify the structural parameters from only output data. In some circumstances, if the input data are available, the extended model, VBARX model, provides an additional advantage over the VBAR model. In this study, an equivalent state-space model derived from measured input and output data is transformed from the VBARX model. Consequently, the structural modal parameters can be estimated accurately using the equivalent state-space model. Two examples of modal identification are presented to demonstrate the availability and effectiveness of the proposed VBARX method. (1) Numerical data simulated in a 3-d.o.f. dynamic system with various types of input data and various noise levels. (2) Experimental data obtained from the National Center for Research on Earthquake Engineering (NCREE) in Taiwan, concerning five-story 1 2 -scale steel structure under a shaking table test.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2003.08.020</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics</subject><ispartof>Journal of sound and vibration, 2004-09, Vol.276 (3), p.1043-1063</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-b224247fb26b92122675352a45c6698a1fddc2c65cfac5b0f105ec9a786ca74e3</citedby><cites>FETCH-LOGICAL-c356t-b224247fb26b92122675352a45c6698a1fddc2c65cfac5b0f105ec9a786ca74e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2003.08.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16024986$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hung, Chen-Far</creatorcontrib><creatorcontrib>Ko, Wen-Jiunn</creatorcontrib><creatorcontrib>Peng, Yen-Tun</creatorcontrib><title>Identification of modal parameters from measured input and output data using a vector backward auto-regressive with exogeneous model</title><title>Journal of sound and vibration</title><description>This paper proposes a modal identification system based on vector backward auto-regressive with exogeneous (VBARX) model. The model is an extension of vector backward auto-regressive (VBAR). Both the backward models offer the same benefits in selecting physical modes, since both can provide a determinate boundary that separates system modes from spurious modes. The VBAR model can identify the structural parameters from only output data. In some circumstances, if the input data are available, the extended model, VBARX model, provides an additional advantage over the VBAR model. In this study, an equivalent state-space model derived from measured input and output data is transformed from the VBARX model. Consequently, the structural modal parameters can be estimated accurately using the equivalent state-space model. Two examples of modal identification are presented to demonstrate the availability and effectiveness of the proposed VBARX method. (1) Numerical data simulated in a 3-d.o.f. dynamic system with various types of input data and various noise levels. (2) Experimental data obtained from the National Center for Research on Earthquake Engineering (NCREE) in Taiwan, concerning five-story 1 2 -scale steel structure under a shaking table test.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kD2P1DAQhi0EEsvBD6BzA13C2ImdRFToxMFJJ9GARGdN7PHiJYkX29mDnh9Olj2JjmqmeD9mHsZeCqgFCP3mUB_yqZYATQ19DRIesZ2AQVW90v1jtgOQsmo1fH3KnuV8AIChbdod-33raCnBB4slxIVHz-focOJHTDhToZS5T3HmM2FeEzkeluNaOC6Ox7WcV4cF-ZrDsufIT2RLTHxE-_0ek-O4llgl2ifKOZyI34fyjdPPuKeF4prPZTQ9Z088TplePMwr9uXm_efrj9Xdpw-31-_uKtsoXapRyla2nR-lHgcppNSdapTEVlmthx6Fd85Kq5X1aNUIXoAiO2DXa4tdS80Ve33JPab4Y6VczByypWnCv8cYOcitqJObUFyENsWcE3lzTGHG9MsIMGfe5mA23ubM20BvNt6b59VDOGaLk0-42JD_GTXIduj1pnt70dH26SlQMtkGWiy5kDZ4xsXwn5Y_gHKY4A</recordid><startdate>20040922</startdate><enddate>20040922</enddate><creator>Hung, Chen-Far</creator><creator>Ko, Wen-Jiunn</creator><creator>Peng, Yen-Tun</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20040922</creationdate><title>Identification of modal parameters from measured input and output data using a vector backward auto-regressive with exogeneous model</title><author>Hung, Chen-Far ; Ko, Wen-Jiunn ; Peng, Yen-Tun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-b224247fb26b92122675352a45c6698a1fddc2c65cfac5b0f105ec9a786ca74e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Chen-Far</creatorcontrib><creatorcontrib>Ko, Wen-Jiunn</creatorcontrib><creatorcontrib>Peng, Yen-Tun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Chen-Far</au><au>Ko, Wen-Jiunn</au><au>Peng, Yen-Tun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of modal parameters from measured input and output data using a vector backward auto-regressive with exogeneous model</atitle><jtitle>Journal of sound and vibration</jtitle><date>2004-09-22</date><risdate>2004</risdate><volume>276</volume><issue>3</issue><spage>1043</spage><epage>1063</epage><pages>1043-1063</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>This paper proposes a modal identification system based on vector backward auto-regressive with exogeneous (VBARX) model. The model is an extension of vector backward auto-regressive (VBAR). Both the backward models offer the same benefits in selecting physical modes, since both can provide a determinate boundary that separates system modes from spurious modes. The VBAR model can identify the structural parameters from only output data. In some circumstances, if the input data are available, the extended model, VBARX model, provides an additional advantage over the VBAR model. In this study, an equivalent state-space model derived from measured input and output data is transformed from the VBARX model. Consequently, the structural modal parameters can be estimated accurately using the equivalent state-space model. Two examples of modal identification are presented to demonstrate the availability and effectiveness of the proposed VBARX method. (1) Numerical data simulated in a 3-d.o.f. dynamic system with various types of input data and various noise levels. (2) Experimental data obtained from the National Center for Research on Earthquake Engineering (NCREE) in Taiwan, concerning five-story 1 2 -scale steel structure under a shaking table test.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2003.08.020</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2004-09, Vol.276 (3), p.1043-1063
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_29235672
source ScienceDirect Journals (5 years ago - present)
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
title Identification of modal parameters from measured input and output data using a vector backward auto-regressive with exogeneous model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20modal%20parameters%20from%20measured%20input%20and%20output%20data%20using%20a%20vector%20backward%20auto-regressive%20with%20exogeneous%20model&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Hung,%20Chen-Far&rft.date=2004-09-22&rft.volume=276&rft.issue=3&rft.spage=1043&rft.epage=1063&rft.pages=1043-1063&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2003.08.020&rft_dat=%3Cproquest_cross%3E29235672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29235672&rft_id=info:pmid/&rft_els_id=S0022460X03009854&rfr_iscdi=true