Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate
In this study, a dense strontium‐doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless‐steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2005-11, Vol.88 (11), p.3275-3278 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3278 |
---|---|
container_issue | 11 |
container_start_page | 3275 |
container_title | Journal of the American Ceramic Society |
container_volume | 88 |
creator | Hwang, Hae Jin Lee, Seunghun Lee, Eun A Moon, Ji-Woong Lim, Yongho |
description | In this study, a dense strontium‐doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless‐steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates, acetylacetone (acac), and 2‐methoxyethanol. The effect of AcAc on the phase behavior and microstructure evolution of the LSC thin films was investigated. After being heat‐treated at 800°C in air, the thin film was found to consist of perovskite LaCrO3, Mn1.5Cr1.5O4, and Cr2O3 phases. The addition of a chelating agent, acac, to the precursor solution led to a reduction in the formation of the strontium chromite (SrCrO4) phase. As a consequence, a thin film having a dense microstructure could be obtained. It was confirmed by Fourier‐tranform Raman spectroscopic analysis and FESEM observations that the carbon deposited on the uncoated SUS430 substrate was amorphous with a spherical morphology. The LSC thin film thus obtained was found to be very effective at preventing carbon deposition when it was heat‐treated under a dry hydrocarbon atmosphere. |
doi_str_mv | 10.1111/j.1551-2916.2005.00591.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29235380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29235380</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3331-c88c0e5cffa7aac93171914f4eb6abd257e9f18cab0c66105ec27dbb0f9574173</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EEkvhP_gCag8J_ohj-4RKWAp0RQWh4mhNXBt5SZOt7RXbf4-3W5UjHWk0M5pHr2b0IoQpqWmJt-uaCkErpmlbM0JEXVLTevcELR4WT9GCEMIqqRh5jl6ktC4j1apZIFh672zGs8fHKyC16iOp2UkXLzjuZshh-oXnCXcQh1I-uM2cQg6lnac8Y8B9hjCNLqWqz86N-Li_7BtOTnC_HVKOkN1L9MzDmNyr-3qELj8uf3SfqtXF2efudFUFzjmtrFKWOGG9BwlgNaeSatr4xg0tDFdMSKc9VRYGYtuWEuEsk1fDQLwWsqGSH6E3B91NnG-2LmVzHZJ14wiTm7fJMM244Io8AqRMtFr8H1RKaC75Y0DGhGoK-PoehGRh9BEmG5LZxHAN8dZQyZTUrS7cuwP3J4zu9t-emL3nZm321u4Pbc3ec3PnudmZL6fd8q4vCtVBIaTsdg8KEH-bVnIpzM-vZ-b9eXlAfvtuzvlfGACtuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28822584</pqid></control><display><type>article</type><title>Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Hwang, Hae Jin ; Lee, Seunghun ; Lee, Eun A ; Moon, Ji-Woong ; Lim, Yongho</creator><creatorcontrib>Hwang, Hae Jin ; Lee, Seunghun ; Lee, Eun A ; Moon, Ji-Woong ; Lim, Yongho</creatorcontrib><description>In this study, a dense strontium‐doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless‐steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates, acetylacetone (acac), and 2‐methoxyethanol. The effect of AcAc on the phase behavior and microstructure evolution of the LSC thin films was investigated. After being heat‐treated at 800°C in air, the thin film was found to consist of perovskite LaCrO3, Mn1.5Cr1.5O4, and Cr2O3 phases. The addition of a chelating agent, acac, to the precursor solution led to a reduction in the formation of the strontium chromite (SrCrO4) phase. As a consequence, a thin film having a dense microstructure could be obtained. It was confirmed by Fourier‐tranform Raman spectroscopic analysis and FESEM observations that the carbon deposited on the uncoated SUS430 substrate was amorphous with a spherical morphology. The LSC thin film thus obtained was found to be very effective at preventing carbon deposition when it was heat‐treated under a dry hydrocarbon atmosphere.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2005.00591.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Inc</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Materials science ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics ; Surface treatments</subject><ispartof>Journal of the American Ceramic Society, 2005-11, Vol.88 (11), p.3275-3278</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2005.00591.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2005.00591.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17287969$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Hae Jin</creatorcontrib><creatorcontrib>Lee, Seunghun</creatorcontrib><creatorcontrib>Lee, Eun A</creatorcontrib><creatorcontrib>Moon, Ji-Woong</creatorcontrib><creatorcontrib>Lim, Yongho</creatorcontrib><title>Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate</title><title>Journal of the American Ceramic Society</title><description>In this study, a dense strontium‐doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless‐steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates, acetylacetone (acac), and 2‐methoxyethanol. The effect of AcAc on the phase behavior and microstructure evolution of the LSC thin films was investigated. After being heat‐treated at 800°C in air, the thin film was found to consist of perovskite LaCrO3, Mn1.5Cr1.5O4, and Cr2O3 phases. The addition of a chelating agent, acac, to the precursor solution led to a reduction in the formation of the strontium chromite (SrCrO4) phase. As a consequence, a thin film having a dense microstructure could be obtained. It was confirmed by Fourier‐tranform Raman spectroscopic analysis and FESEM observations that the carbon deposited on the uncoated SUS430 substrate was amorphous with a spherical morphology. The LSC thin film thus obtained was found to be very effective at preventing carbon deposition when it was heat‐treated under a dry hydrocarbon atmosphere.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><subject>Surface treatments</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EEkvhP_gCag8J_ohj-4RKWAp0RQWh4mhNXBt5SZOt7RXbf4-3W5UjHWk0M5pHr2b0IoQpqWmJt-uaCkErpmlbM0JEXVLTevcELR4WT9GCEMIqqRh5jl6ktC4j1apZIFh672zGs8fHKyC16iOp2UkXLzjuZshh-oXnCXcQh1I-uM2cQg6lnac8Y8B9hjCNLqWqz86N-Li_7BtOTnC_HVKOkN1L9MzDmNyr-3qELj8uf3SfqtXF2efudFUFzjmtrFKWOGG9BwlgNaeSatr4xg0tDFdMSKc9VRYGYtuWEuEsk1fDQLwWsqGSH6E3B91NnG-2LmVzHZJ14wiTm7fJMM244Io8AqRMtFr8H1RKaC75Y0DGhGoK-PoehGRh9BEmG5LZxHAN8dZQyZTUrS7cuwP3J4zu9t-emL3nZm321u4Pbc3ec3PnudmZL6fd8q4vCtVBIaTsdg8KEH-bVnIpzM-vZ-b9eXlAfvtuzvlfGACtuw</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Hwang, Hae Jin</creator><creator>Lee, Seunghun</creator><creator>Lee, Eun A</creator><creator>Moon, Ji-Woong</creator><creator>Lim, Yongho</creator><general>Blackwell Science Inc</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>200511</creationdate><title>Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate</title><author>Hwang, Hae Jin ; Lee, Seunghun ; Lee, Eun A ; Moon, Ji-Woong ; Lim, Yongho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3331-c88c0e5cffa7aac93171914f4eb6abd257e9f18cab0c66105ec27dbb0f9574173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><topic>Surface treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Hae Jin</creatorcontrib><creatorcontrib>Lee, Seunghun</creatorcontrib><creatorcontrib>Lee, Eun A</creatorcontrib><creatorcontrib>Moon, Ji-Woong</creatorcontrib><creatorcontrib>Lim, Yongho</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Hae Jin</au><au>Lee, Seunghun</au><au>Lee, Eun A</au><au>Moon, Ji-Woong</au><au>Lim, Yongho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2005-11</date><risdate>2005</risdate><volume>88</volume><issue>11</issue><spage>3275</spage><epage>3278</epage><pages>3275-3278</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>In this study, a dense strontium‐doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless‐steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates, acetylacetone (acac), and 2‐methoxyethanol. The effect of AcAc on the phase behavior and microstructure evolution of the LSC thin films was investigated. After being heat‐treated at 800°C in air, the thin film was found to consist of perovskite LaCrO3, Mn1.5Cr1.5O4, and Cr2O3 phases. The addition of a chelating agent, acac, to the precursor solution led to a reduction in the formation of the strontium chromite (SrCrO4) phase. As a consequence, a thin film having a dense microstructure could be obtained. It was confirmed by Fourier‐tranform Raman spectroscopic analysis and FESEM observations that the carbon deposited on the uncoated SUS430 substrate was amorphous with a spherical morphology. The LSC thin film thus obtained was found to be very effective at preventing carbon deposition when it was heat‐treated under a dry hydrocarbon atmosphere.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Inc</pub><doi>10.1111/j.1551-2916.2005.00591.x</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2005-11, Vol.88 (11), p.3275-3278 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_29235380 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Applied sciences Cross-disciplinary physics: materials science rheology Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Liquid phase epitaxy deposition from liquid phases (melts, solutions, and surface layers on liquids) Materials science Metals. Metallurgy Methods of deposition of films and coatings film growth and epitaxy Physics Surface treatments |
title | Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20(La0.8Sr0.2)CrO3%20Coating%20on%20Carbon%20Deposition%20onto%20a%20Stainless-Steel%20(SUS430)%20Substrate&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Hwang,%20Hae%20Jin&rft.date=2005-11&rft.volume=88&rft.issue=11&rft.spage=3275&rft.epage=3278&rft.pages=3275-3278&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2005.00591.x&rft_dat=%3Cproquest_pasca%3E29235380%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28822584&rft_id=info:pmid/&rfr_iscdi=true |