Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate

In this study, a dense strontium‐doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless‐steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2005-11, Vol.88 (11), p.3275-3278
Hauptverfasser: Hwang, Hae Jin, Lee, Seunghun, Lee, Eun A, Moon, Ji-Woong, Lim, Yongho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3278
container_issue 11
container_start_page 3275
container_title Journal of the American Ceramic Society
container_volume 88
creator Hwang, Hae Jin
Lee, Seunghun
Lee, Eun A
Moon, Ji-Woong
Lim, Yongho
description In this study, a dense strontium‐doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless‐steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates, acetylacetone (acac), and 2‐methoxyethanol. The effect of AcAc on the phase behavior and microstructure evolution of the LSC thin films was investigated. After being heat‐treated at 800°C in air, the thin film was found to consist of perovskite LaCrO3, Mn1.5Cr1.5O4, and Cr2O3 phases. The addition of a chelating agent, acac, to the precursor solution led to a reduction in the formation of the strontium chromite (SrCrO4) phase. As a consequence, a thin film having a dense microstructure could be obtained. It was confirmed by Fourier‐tranform Raman spectroscopic analysis and FESEM observations that the carbon deposited on the uncoated SUS430 substrate was amorphous with a spherical morphology. The LSC thin film thus obtained was found to be very effective at preventing carbon deposition when it was heat‐treated under a dry hydrocarbon atmosphere.
doi_str_mv 10.1111/j.1551-2916.2005.00591.x
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29235380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29235380</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3331-c88c0e5cffa7aac93171914f4eb6abd257e9f18cab0c66105ec27dbb0f9574173</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EEkvhP_gCag8J_ohj-4RKWAp0RQWh4mhNXBt5SZOt7RXbf4-3W5UjHWk0M5pHr2b0IoQpqWmJt-uaCkErpmlbM0JEXVLTevcELR4WT9GCEMIqqRh5jl6ktC4j1apZIFh672zGs8fHKyC16iOp2UkXLzjuZshh-oXnCXcQh1I-uM2cQg6lnac8Y8B9hjCNLqWqz86N-Li_7BtOTnC_HVKOkN1L9MzDmNyr-3qELj8uf3SfqtXF2efudFUFzjmtrFKWOGG9BwlgNaeSatr4xg0tDFdMSKc9VRYGYtuWEuEsk1fDQLwWsqGSH6E3B91NnG-2LmVzHZJ14wiTm7fJMM244Io8AqRMtFr8H1RKaC75Y0DGhGoK-PoehGRh9BEmG5LZxHAN8dZQyZTUrS7cuwP3J4zu9t-emL3nZm321u4Pbc3ec3PnudmZL6fd8q4vCtVBIaTsdg8KEH-bVnIpzM-vZ-b9eXlAfvtuzvlfGACtuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28822584</pqid></control><display><type>article</type><title>Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Hwang, Hae Jin ; Lee, Seunghun ; Lee, Eun A ; Moon, Ji-Woong ; Lim, Yongho</creator><creatorcontrib>Hwang, Hae Jin ; Lee, Seunghun ; Lee, Eun A ; Moon, Ji-Woong ; Lim, Yongho</creatorcontrib><description>In this study, a dense strontium‐doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless‐steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates, acetylacetone (acac), and 2‐methoxyethanol. The effect of AcAc on the phase behavior and microstructure evolution of the LSC thin films was investigated. After being heat‐treated at 800°C in air, the thin film was found to consist of perovskite LaCrO3, Mn1.5Cr1.5O4, and Cr2O3 phases. The addition of a chelating agent, acac, to the precursor solution led to a reduction in the formation of the strontium chromite (SrCrO4) phase. As a consequence, a thin film having a dense microstructure could be obtained. It was confirmed by Fourier‐tranform Raman spectroscopic analysis and FESEM observations that the carbon deposited on the uncoated SUS430 substrate was amorphous with a spherical morphology. The LSC thin film thus obtained was found to be very effective at preventing carbon deposition when it was heat‐treated under a dry hydrocarbon atmosphere.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2005.00591.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Inc</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Materials science ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics ; Surface treatments</subject><ispartof>Journal of the American Ceramic Society, 2005-11, Vol.88 (11), p.3275-3278</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2005.00591.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2005.00591.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17287969$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Hae Jin</creatorcontrib><creatorcontrib>Lee, Seunghun</creatorcontrib><creatorcontrib>Lee, Eun A</creatorcontrib><creatorcontrib>Moon, Ji-Woong</creatorcontrib><creatorcontrib>Lim, Yongho</creatorcontrib><title>Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate</title><title>Journal of the American Ceramic Society</title><description>In this study, a dense strontium‐doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless‐steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates, acetylacetone (acac), and 2‐methoxyethanol. The effect of AcAc on the phase behavior and microstructure evolution of the LSC thin films was investigated. After being heat‐treated at 800°C in air, the thin film was found to consist of perovskite LaCrO3, Mn1.5Cr1.5O4, and Cr2O3 phases. The addition of a chelating agent, acac, to the precursor solution led to a reduction in the formation of the strontium chromite (SrCrO4) phase. As a consequence, a thin film having a dense microstructure could be obtained. It was confirmed by Fourier‐tranform Raman spectroscopic analysis and FESEM observations that the carbon deposited on the uncoated SUS430 substrate was amorphous with a spherical morphology. The LSC thin film thus obtained was found to be very effective at preventing carbon deposition when it was heat‐treated under a dry hydrocarbon atmosphere.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><subject>Surface treatments</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EEkvhP_gCag8J_ohj-4RKWAp0RQWh4mhNXBt5SZOt7RXbf4-3W5UjHWk0M5pHr2b0IoQpqWmJt-uaCkErpmlbM0JEXVLTevcELR4WT9GCEMIqqRh5jl6ktC4j1apZIFh672zGs8fHKyC16iOp2UkXLzjuZshh-oXnCXcQh1I-uM2cQg6lnac8Y8B9hjCNLqWqz86N-Li_7BtOTnC_HVKOkN1L9MzDmNyr-3qELj8uf3SfqtXF2efudFUFzjmtrFKWOGG9BwlgNaeSatr4xg0tDFdMSKc9VRYGYtuWEuEsk1fDQLwWsqGSH6E3B91NnG-2LmVzHZJ14wiTm7fJMM244Io8AqRMtFr8H1RKaC75Y0DGhGoK-PoehGRh9BEmG5LZxHAN8dZQyZTUrS7cuwP3J4zu9t-emL3nZm321u4Pbc3ec3PnudmZL6fd8q4vCtVBIaTsdg8KEH-bVnIpzM-vZ-b9eXlAfvtuzvlfGACtuw</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Hwang, Hae Jin</creator><creator>Lee, Seunghun</creator><creator>Lee, Eun A</creator><creator>Moon, Ji-Woong</creator><creator>Lim, Yongho</creator><general>Blackwell Science Inc</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>200511</creationdate><title>Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate</title><author>Hwang, Hae Jin ; Lee, Seunghun ; Lee, Eun A ; Moon, Ji-Woong ; Lim, Yongho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3331-c88c0e5cffa7aac93171914f4eb6abd257e9f18cab0c66105ec27dbb0f9574173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><topic>Surface treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Hae Jin</creatorcontrib><creatorcontrib>Lee, Seunghun</creatorcontrib><creatorcontrib>Lee, Eun A</creatorcontrib><creatorcontrib>Moon, Ji-Woong</creatorcontrib><creatorcontrib>Lim, Yongho</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Hae Jin</au><au>Lee, Seunghun</au><au>Lee, Eun A</au><au>Moon, Ji-Woong</au><au>Lim, Yongho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2005-11</date><risdate>2005</risdate><volume>88</volume><issue>11</issue><spage>3275</spage><epage>3278</epage><pages>3275-3278</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>In this study, a dense strontium‐doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless‐steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates, acetylacetone (acac), and 2‐methoxyethanol. The effect of AcAc on the phase behavior and microstructure evolution of the LSC thin films was investigated. After being heat‐treated at 800°C in air, the thin film was found to consist of perovskite LaCrO3, Mn1.5Cr1.5O4, and Cr2O3 phases. The addition of a chelating agent, acac, to the precursor solution led to a reduction in the formation of the strontium chromite (SrCrO4) phase. As a consequence, a thin film having a dense microstructure could be obtained. It was confirmed by Fourier‐tranform Raman spectroscopic analysis and FESEM observations that the carbon deposited on the uncoated SUS430 substrate was amorphous with a spherical morphology. The LSC thin film thus obtained was found to be very effective at preventing carbon deposition when it was heat‐treated under a dry hydrocarbon atmosphere.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Inc</pub><doi>10.1111/j.1551-2916.2005.00591.x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2005-11, Vol.88 (11), p.3275-3278
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_29235380
source Wiley Online Library - AutoHoldings Journals
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Liquid phase epitaxy
deposition from liquid phases (melts, solutions, and surface layers on liquids)
Materials science
Metals. Metallurgy
Methods of deposition of films and coatings
film growth and epitaxy
Physics
Surface treatments
title Effect of (La0.8Sr0.2)CrO3 Coating on Carbon Deposition onto a Stainless-Steel (SUS430) Substrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20(La0.8Sr0.2)CrO3%20Coating%20on%20Carbon%20Deposition%20onto%20a%20Stainless-Steel%20(SUS430)%20Substrate&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Hwang,%20Hae%20Jin&rft.date=2005-11&rft.volume=88&rft.issue=11&rft.spage=3275&rft.epage=3278&rft.pages=3275-3278&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2005.00591.x&rft_dat=%3Cproquest_pasca%3E29235380%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28822584&rft_id=info:pmid/&rfr_iscdi=true