Corrosion protection for aerospace aluminum alloys by Modified Self-assembled NAnophase Particle (MSNAP) sol–gel
The Air Force Research Laboratory is developing environmentally benign alternatives to the traditional chromated aircraft coating for aircraft corrosion protection, targeted at a 30+ year performance life cycle. The Self-assembled NAnophase Particles (SNAP) process is a new method of forming functio...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2006-10, Vol.201 (3), p.1080-1084 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1084 |
---|---|
container_issue | 3 |
container_start_page | 1080 |
container_title | Surface & coatings technology |
container_volume | 201 |
creator | Voevodin, N.N. Kurdziel, J.W. Mantz, R. |
description | The Air Force Research Laboratory is developing environmentally benign alternatives to the traditional chromated aircraft coating for aircraft corrosion protection, targeted at a 30+ year performance life cycle. The Self-assembled NAnophase Particles (SNAP) process is a new method of forming functionalized silica nanoparticles in-situ from hydrolyzed tetramethoxysilane (TMOS) and glycidoxypropyltrimethoxysilane (GPTMS) in an aqueous sol–gel process, and then cross-linking the nanoparticles to form a thin, fully dense, protective film on Al aerospace alloys. These nanostructured coatings have been shown to provide an excellent barrier to corrosion for aluminum aerospace alloys; and other applications are envisioned. Much work has been done on characterization and performance of these coatings.
This paper discusses a modification of SNAP formulation with tetraethoxysilane (TEOS). Films were formulated and developed to produce a dense barrier sol–gel coating on AA2024-T3. Corrosion protection properties of the films were evaluated with potentiodynamic scan (PDS) electrochemical technique, electrochemical impedance spectroscopy (EIS) and Salt Spray test (5% NaCl). |
doi_str_mv | 10.1016/j.surfcoat.2006.01.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29233282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897206000818</els_id><sourcerecordid>29233282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-86ada4a5d7e329ecbb3a7583da4edd54d35ce42521614eb97d32b57b1e0c24903</originalsourceid><addsrcrecordid>eNqFkMuO1DAQRS0EEs3ALyBvQLBI8COJ4x2t1vCQZoaRBtZWxa6AW07c2AlS7_gH_pAvwa0exJJVPXSrru4h5DlnNWe8e7Ov85pGG2GpBWNdzXjNRP-AbHivdCVlox6SDROtqnqtxGPyJOc9Y4wr3WxI2sWUYvZxpocUF7TLqR1jooBlfwCLFMI6-XmdShPiMdPhSK-j86NHR-8wjBXkjNMQyniznePhG2Skt5AWbwPSV9d3N9vb1zTH8Pvnr68YnpJHI4SMz-7rBfny7vLz7kN19en9x932qrKN1EvVd-CggdYplEKjHQYJqu1lWaJzbeNka7ERreAdb3DQykkxtGrgyKxoNJMX5OX5bwn2fcW8mMlniyHAjHHNRmghpehFEXZnoS2Jc8LRHJKfIB0NZ-aE2OzNX8TmhNgwbgricvji3gGyhTAmmK3P_657qVuuedG9PeuwxP3hMZlsPc4WnU-FuHHR_8_qDzkdmCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29233282</pqid></control><display><type>article</type><title>Corrosion protection for aerospace aluminum alloys by Modified Self-assembled NAnophase Particle (MSNAP) sol–gel</title><source>Elsevier ScienceDirect Journals</source><creator>Voevodin, N.N. ; Kurdziel, J.W. ; Mantz, R.</creator><creatorcontrib>Voevodin, N.N. ; Kurdziel, J.W. ; Mantz, R.</creatorcontrib><description>The Air Force Research Laboratory is developing environmentally benign alternatives to the traditional chromated aircraft coating for aircraft corrosion protection, targeted at a 30+ year performance life cycle. The Self-assembled NAnophase Particles (SNAP) process is a new method of forming functionalized silica nanoparticles in-situ from hydrolyzed tetramethoxysilane (TMOS) and glycidoxypropyltrimethoxysilane (GPTMS) in an aqueous sol–gel process, and then cross-linking the nanoparticles to form a thin, fully dense, protective film on Al aerospace alloys. These nanostructured coatings have been shown to provide an excellent barrier to corrosion for aluminum aerospace alloys; and other applications are envisioned. Much work has been done on characterization and performance of these coatings.
This paper discusses a modification of SNAP formulation with tetraethoxysilane (TEOS). Films were formulated and developed to produce a dense barrier sol–gel coating on AA2024-T3. Corrosion protection properties of the films were evaluated with potentiodynamic scan (PDS) electrochemical technique, electrochemical impedance spectroscopy (EIS) and Salt Spray test (5% NaCl).</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2006.01.028</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Corrosion ; Corrosion environments ; Corrosion prevention ; Electrochemical impedance spectroscopy (EIS) ; Exact sciences and technology ; Metals. Metallurgy ; Salt Spray test ; Sol–gel</subject><ispartof>Surface & coatings technology, 2006-10, Vol.201 (3), p.1080-1084</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-86ada4a5d7e329ecbb3a7583da4edd54d35ce42521614eb97d32b57b1e0c24903</citedby><cites>FETCH-LOGICAL-c439t-86ada4a5d7e329ecbb3a7583da4edd54d35ce42521614eb97d32b57b1e0c24903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897206000818$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18395191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Voevodin, N.N.</creatorcontrib><creatorcontrib>Kurdziel, J.W.</creatorcontrib><creatorcontrib>Mantz, R.</creatorcontrib><title>Corrosion protection for aerospace aluminum alloys by Modified Self-assembled NAnophase Particle (MSNAP) sol–gel</title><title>Surface & coatings technology</title><description>The Air Force Research Laboratory is developing environmentally benign alternatives to the traditional chromated aircraft coating for aircraft corrosion protection, targeted at a 30+ year performance life cycle. The Self-assembled NAnophase Particles (SNAP) process is a new method of forming functionalized silica nanoparticles in-situ from hydrolyzed tetramethoxysilane (TMOS) and glycidoxypropyltrimethoxysilane (GPTMS) in an aqueous sol–gel process, and then cross-linking the nanoparticles to form a thin, fully dense, protective film on Al aerospace alloys. These nanostructured coatings have been shown to provide an excellent barrier to corrosion for aluminum aerospace alloys; and other applications are envisioned. Much work has been done on characterization and performance of these coatings.
This paper discusses a modification of SNAP formulation with tetraethoxysilane (TEOS). Films were formulated and developed to produce a dense barrier sol–gel coating on AA2024-T3. Corrosion protection properties of the films were evaluated with potentiodynamic scan (PDS) electrochemical technique, electrochemical impedance spectroscopy (EIS) and Salt Spray test (5% NaCl).</description><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion prevention</subject><subject>Electrochemical impedance spectroscopy (EIS)</subject><subject>Exact sciences and technology</subject><subject>Metals. Metallurgy</subject><subject>Salt Spray test</subject><subject>Sol–gel</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkMuO1DAQRS0EEs3ALyBvQLBI8COJ4x2t1vCQZoaRBtZWxa6AW07c2AlS7_gH_pAvwa0exJJVPXSrru4h5DlnNWe8e7Ov85pGG2GpBWNdzXjNRP-AbHivdCVlox6SDROtqnqtxGPyJOc9Y4wr3WxI2sWUYvZxpocUF7TLqR1jooBlfwCLFMI6-XmdShPiMdPhSK-j86NHR-8wjBXkjNMQyniznePhG2Skt5AWbwPSV9d3N9vb1zTH8Pvnr68YnpJHI4SMz-7rBfny7vLz7kN19en9x932qrKN1EvVd-CggdYplEKjHQYJqu1lWaJzbeNka7ERreAdb3DQykkxtGrgyKxoNJMX5OX5bwn2fcW8mMlniyHAjHHNRmghpehFEXZnoS2Jc8LRHJKfIB0NZ-aE2OzNX8TmhNgwbgricvji3gGyhTAmmK3P_657qVuuedG9PeuwxP3hMZlsPc4WnU-FuHHR_8_qDzkdmCU</recordid><startdate>20061005</startdate><enddate>20061005</enddate><creator>Voevodin, N.N.</creator><creator>Kurdziel, J.W.</creator><creator>Mantz, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20061005</creationdate><title>Corrosion protection for aerospace aluminum alloys by Modified Self-assembled NAnophase Particle (MSNAP) sol–gel</title><author>Voevodin, N.N. ; Kurdziel, J.W. ; Mantz, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-86ada4a5d7e329ecbb3a7583da4edd54d35ce42521614eb97d32b57b1e0c24903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion prevention</topic><topic>Electrochemical impedance spectroscopy (EIS)</topic><topic>Exact sciences and technology</topic><topic>Metals. Metallurgy</topic><topic>Salt Spray test</topic><topic>Sol–gel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voevodin, N.N.</creatorcontrib><creatorcontrib>Kurdziel, J.W.</creatorcontrib><creatorcontrib>Mantz, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voevodin, N.N.</au><au>Kurdziel, J.W.</au><au>Mantz, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion protection for aerospace aluminum alloys by Modified Self-assembled NAnophase Particle (MSNAP) sol–gel</atitle><jtitle>Surface & coatings technology</jtitle><date>2006-10-05</date><risdate>2006</risdate><volume>201</volume><issue>3</issue><spage>1080</spage><epage>1084</epage><pages>1080-1084</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>The Air Force Research Laboratory is developing environmentally benign alternatives to the traditional chromated aircraft coating for aircraft corrosion protection, targeted at a 30+ year performance life cycle. The Self-assembled NAnophase Particles (SNAP) process is a new method of forming functionalized silica nanoparticles in-situ from hydrolyzed tetramethoxysilane (TMOS) and glycidoxypropyltrimethoxysilane (GPTMS) in an aqueous sol–gel process, and then cross-linking the nanoparticles to form a thin, fully dense, protective film on Al aerospace alloys. These nanostructured coatings have been shown to provide an excellent barrier to corrosion for aluminum aerospace alloys; and other applications are envisioned. Much work has been done on characterization and performance of these coatings.
This paper discusses a modification of SNAP formulation with tetraethoxysilane (TEOS). Films were formulated and developed to produce a dense barrier sol–gel coating on AA2024-T3. Corrosion protection properties of the films were evaluated with potentiodynamic scan (PDS) electrochemical technique, electrochemical impedance spectroscopy (EIS) and Salt Spray test (5% NaCl).</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2006.01.028</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2006-10, Vol.201 (3), p.1080-1084 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_29233282 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Corrosion Corrosion environments Corrosion prevention Electrochemical impedance spectroscopy (EIS) Exact sciences and technology Metals. Metallurgy Salt Spray test Sol–gel |
title | Corrosion protection for aerospace aluminum alloys by Modified Self-assembled NAnophase Particle (MSNAP) sol–gel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20protection%20for%20aerospace%20aluminum%20alloys%20by%20Modified%20Self-assembled%20NAnophase%20Particle%20(MSNAP)%20sol%E2%80%93gel&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Voevodin,%20N.N.&rft.date=2006-10-05&rft.volume=201&rft.issue=3&rft.spage=1080&rft.epage=1084&rft.pages=1080-1084&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2006.01.028&rft_dat=%3Cproquest_cross%3E29233282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29233282&rft_id=info:pmid/&rft_els_id=S0257897206000818&rfr_iscdi=true |