Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions

Molecule-carbon nanotube hybrid devices, utilizing self-assembled monolayer (SAM) of chemically synthesized organic molecules and carbon nanotubes, were fabricated and their electrical properties were measured. Five different kinds of aromatic compounds with the length in the range of 1.4 - 2.2 nm w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moon, Sunkyung, Lee, Soon-Gul, Choi, Hwa-Sup, Lee, Changjin, Kang, Youngku, So, Hye-Mi, Kim, Jinhee
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1479
container_issue
container_start_page 1478
container_title
container_volume 850
creator Moon, Sunkyung
Lee, Soon-Gul
Choi, Hwa-Sup
Lee, Changjin
Kang, Youngku
So, Hye-Mi
Kim, Jinhee
description Molecule-carbon nanotube hybrid devices, utilizing self-assembled monolayer (SAM) of chemically synthesized organic molecules and carbon nanotubes, were fabricated and their electrical properties were measured. Five different kinds of aromatic compounds with the length in the range of 1.4 - 2.2 nm were synthesized and used for the device fabrication. For most of the samples, the two-probe resistance at room temperature was in the range of 20 k - 5 G. We have found that the presence of the SAM between the metal electrode and the carbon nanotube greatly enhances the two-probe conductance, suggesting that the SAM might reduce the energy barrier formed at the metal-carbon nanotube interface. For four out of the five molecules, the room temperature resistance showed no noticeable dependence on the length of the molecule.
doi_str_mv 10.1063/1.2355261
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29230240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29230240</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-fa4d6bf2f650ca40b2341b1c07e72f2b2318dde56fe913e6ffa2e74e23f6d2ce3</originalsourceid><addsrcrecordid>eNotjz9PwzAUxC0BEm1h4BtkYkt5fnbsZKwiSkEtXUBiq_znWQSFpNjJAJ-eoDKd7qe7k46xGw5LDkrc8SWKokDFz9gctCgkCKnFOZsBVDJHKd4u2TylDwCstC5nbLc2NjbODE3fZavOZ_W7icYNFJufE9yHbNe35MaW8tpEO6Fn0_XDaCnbfE9lnz2NnfvLpit2EUyb6PpfF-x1ff9Sb_Lt_uGxXm3zIy_VkAcjvbIBgyrAGQkWheSWO9CkMeBkeek9FSpQxQWpEAySloQiKI-OxILdnnaPsf8aKQ2HzyY5alvTUT-mA1YoAKfzv0ynUSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29230240</pqid></control><display><type>conference_proceeding</type><title>Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions</title><source>AIP Journals Complete</source><creator>Moon, Sunkyung ; Lee, Soon-Gul ; Choi, Hwa-Sup ; Lee, Changjin ; Kang, Youngku ; So, Hye-Mi ; Kim, Jinhee</creator><creatorcontrib>Moon, Sunkyung ; Lee, Soon-Gul ; Choi, Hwa-Sup ; Lee, Changjin ; Kang, Youngku ; So, Hye-Mi ; Kim, Jinhee</creatorcontrib><description>Molecule-carbon nanotube hybrid devices, utilizing self-assembled monolayer (SAM) of chemically synthesized organic molecules and carbon nanotubes, were fabricated and their electrical properties were measured. Five different kinds of aromatic compounds with the length in the range of 1.4 - 2.2 nm were synthesized and used for the device fabrication. For most of the samples, the two-probe resistance at room temperature was in the range of 20 k - 5 G. We have found that the presence of the SAM between the metal electrode and the carbon nanotube greatly enhances the two-probe conductance, suggesting that the SAM might reduce the energy barrier formed at the metal-carbon nanotube interface. For four out of the five molecules, the room temperature resistance showed no noticeable dependence on the length of the molecule.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735403473</identifier><identifier>ISBN: 9780735403475</identifier><identifier>DOI: 10.1063/1.2355261</identifier><language>eng</language><ispartof>Low Temperature Physics: Part B (AIP Conference Proceedings Volume 850), 2006, Vol.850, p.1478-1479</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moon, Sunkyung</creatorcontrib><creatorcontrib>Lee, Soon-Gul</creatorcontrib><creatorcontrib>Choi, Hwa-Sup</creatorcontrib><creatorcontrib>Lee, Changjin</creatorcontrib><creatorcontrib>Kang, Youngku</creatorcontrib><creatorcontrib>So, Hye-Mi</creatorcontrib><creatorcontrib>Kim, Jinhee</creatorcontrib><title>Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions</title><title>Low Temperature Physics: Part B (AIP Conference Proceedings Volume 850)</title><description>Molecule-carbon nanotube hybrid devices, utilizing self-assembled monolayer (SAM) of chemically synthesized organic molecules and carbon nanotubes, were fabricated and their electrical properties were measured. Five different kinds of aromatic compounds with the length in the range of 1.4 - 2.2 nm were synthesized and used for the device fabrication. For most of the samples, the two-probe resistance at room temperature was in the range of 20 k - 5 G. We have found that the presence of the SAM between the metal electrode and the carbon nanotube greatly enhances the two-probe conductance, suggesting that the SAM might reduce the energy barrier formed at the metal-carbon nanotube interface. For four out of the five molecules, the room temperature resistance showed no noticeable dependence on the length of the molecule.</description><issn>0094-243X</issn><isbn>0735403473</isbn><isbn>9780735403475</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjz9PwzAUxC0BEm1h4BtkYkt5fnbsZKwiSkEtXUBiq_znWQSFpNjJAJ-eoDKd7qe7k46xGw5LDkrc8SWKokDFz9gctCgkCKnFOZsBVDJHKd4u2TylDwCstC5nbLc2NjbODE3fZavOZ_W7icYNFJufE9yHbNe35MaW8tpEO6Fn0_XDaCnbfE9lnz2NnfvLpit2EUyb6PpfF-x1ff9Sb_Lt_uGxXm3zIy_VkAcjvbIBgyrAGQkWheSWO9CkMeBkeek9FSpQxQWpEAySloQiKI-OxILdnnaPsf8aKQ2HzyY5alvTUT-mA1YoAKfzv0ynUSE</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Moon, Sunkyung</creator><creator>Lee, Soon-Gul</creator><creator>Choi, Hwa-Sup</creator><creator>Lee, Changjin</creator><creator>Kang, Youngku</creator><creator>So, Hye-Mi</creator><creator>Kim, Jinhee</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060101</creationdate><title>Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions</title><author>Moon, Sunkyung ; Lee, Soon-Gul ; Choi, Hwa-Sup ; Lee, Changjin ; Kang, Youngku ; So, Hye-Mi ; Kim, Jinhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-fa4d6bf2f650ca40b2341b1c07e72f2b2318dde56fe913e6ffa2e74e23f6d2ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Sunkyung</creatorcontrib><creatorcontrib>Lee, Soon-Gul</creatorcontrib><creatorcontrib>Choi, Hwa-Sup</creatorcontrib><creatorcontrib>Lee, Changjin</creatorcontrib><creatorcontrib>Kang, Youngku</creatorcontrib><creatorcontrib>So, Hye-Mi</creatorcontrib><creatorcontrib>Kim, Jinhee</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Sunkyung</au><au>Lee, Soon-Gul</au><au>Choi, Hwa-Sup</au><au>Lee, Changjin</au><au>Kang, Youngku</au><au>So, Hye-Mi</au><au>Kim, Jinhee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions</atitle><btitle>Low Temperature Physics: Part B (AIP Conference Proceedings Volume 850)</btitle><date>2006-01-01</date><risdate>2006</risdate><volume>850</volume><spage>1478</spage><epage>1479</epage><pages>1478-1479</pages><issn>0094-243X</issn><isbn>0735403473</isbn><isbn>9780735403475</isbn><abstract>Molecule-carbon nanotube hybrid devices, utilizing self-assembled monolayer (SAM) of chemically synthesized organic molecules and carbon nanotubes, were fabricated and their electrical properties were measured. Five different kinds of aromatic compounds with the length in the range of 1.4 - 2.2 nm were synthesized and used for the device fabrication. For most of the samples, the two-probe resistance at room temperature was in the range of 20 k - 5 G. We have found that the presence of the SAM between the metal electrode and the carbon nanotube greatly enhances the two-probe conductance, suggesting that the SAM might reduce the energy barrier formed at the metal-carbon nanotube interface. For four out of the five molecules, the room temperature resistance showed no noticeable dependence on the length of the molecule.</abstract><doi>10.1063/1.2355261</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Low Temperature Physics: Part B (AIP Conference Proceedings Volume 850), 2006, Vol.850, p.1478-1479
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_29230240
source AIP Journals Complete
title Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fabrication%20And%20Characterization%20Of%20Molecule-Carbon%20Nanotube%20Hybrid%20Junctions&rft.btitle=Low%20Temperature%20Physics:%20Part%20B%20(AIP%20Conference%20Proceedings%20Volume%20850)&rft.au=Moon,%20Sunkyung&rft.date=2006-01-01&rft.volume=850&rft.spage=1478&rft.epage=1479&rft.pages=1478-1479&rft.issn=0094-243X&rft.isbn=0735403473&rft.isbn_list=9780735403475&rft_id=info:doi/10.1063/1.2355261&rft_dat=%3Cproquest%3E29230240%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29230240&rft_id=info:pmid/&rfr_iscdi=true