Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions
Molecule-carbon nanotube hybrid devices, utilizing self-assembled monolayer (SAM) of chemically synthesized organic molecules and carbon nanotubes, were fabricated and their electrical properties were measured. Five different kinds of aromatic compounds with the length in the range of 1.4 - 2.2 nm w...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1479 |
---|---|
container_issue | |
container_start_page | 1478 |
container_title | |
container_volume | 850 |
creator | Moon, Sunkyung Lee, Soon-Gul Choi, Hwa-Sup Lee, Changjin Kang, Youngku So, Hye-Mi Kim, Jinhee |
description | Molecule-carbon nanotube hybrid devices, utilizing self-assembled monolayer (SAM) of chemically synthesized organic molecules and carbon nanotubes, were fabricated and their electrical properties were measured. Five different kinds of aromatic compounds with the length in the range of 1.4 - 2.2 nm were synthesized and used for the device fabrication. For most of the samples, the two-probe resistance at room temperature was in the range of 20 k - 5 G. We have found that the presence of the SAM between the metal electrode and the carbon nanotube greatly enhances the two-probe conductance, suggesting that the SAM might reduce the energy barrier formed at the metal-carbon nanotube interface. For four out of the five molecules, the room temperature resistance showed no noticeable dependence on the length of the molecule. |
doi_str_mv | 10.1063/1.2355261 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29230240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29230240</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-fa4d6bf2f650ca40b2341b1c07e72f2b2318dde56fe913e6ffa2e74e23f6d2ce3</originalsourceid><addsrcrecordid>eNotjz9PwzAUxC0BEm1h4BtkYkt5fnbsZKwiSkEtXUBiq_znWQSFpNjJAJ-eoDKd7qe7k46xGw5LDkrc8SWKokDFz9gctCgkCKnFOZsBVDJHKd4u2TylDwCstC5nbLc2NjbODE3fZavOZ_W7icYNFJufE9yHbNe35MaW8tpEO6Fn0_XDaCnbfE9lnz2NnfvLpit2EUyb6PpfF-x1ff9Sb_Lt_uGxXm3zIy_VkAcjvbIBgyrAGQkWheSWO9CkMeBkeek9FSpQxQWpEAySloQiKI-OxILdnnaPsf8aKQ2HzyY5alvTUT-mA1YoAKfzv0ynUSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29230240</pqid></control><display><type>conference_proceeding</type><title>Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions</title><source>AIP Journals Complete</source><creator>Moon, Sunkyung ; Lee, Soon-Gul ; Choi, Hwa-Sup ; Lee, Changjin ; Kang, Youngku ; So, Hye-Mi ; Kim, Jinhee</creator><creatorcontrib>Moon, Sunkyung ; Lee, Soon-Gul ; Choi, Hwa-Sup ; Lee, Changjin ; Kang, Youngku ; So, Hye-Mi ; Kim, Jinhee</creatorcontrib><description>Molecule-carbon nanotube hybrid devices, utilizing self-assembled monolayer (SAM) of chemically synthesized organic molecules and carbon nanotubes, were fabricated and their electrical properties were measured. Five different kinds of aromatic compounds with the length in the range of 1.4 - 2.2 nm were synthesized and used for the device fabrication. For most of the samples, the two-probe resistance at room temperature was in the range of 20 k - 5 G. We have found that the presence of the SAM between the metal electrode and the carbon nanotube greatly enhances the two-probe conductance, suggesting that the SAM might reduce the energy barrier formed at the metal-carbon nanotube interface. For four out of the five molecules, the room temperature resistance showed no noticeable dependence on the length of the molecule.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735403473</identifier><identifier>ISBN: 9780735403475</identifier><identifier>DOI: 10.1063/1.2355261</identifier><language>eng</language><ispartof>Low Temperature Physics: Part B (AIP Conference Proceedings Volume 850), 2006, Vol.850, p.1478-1479</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moon, Sunkyung</creatorcontrib><creatorcontrib>Lee, Soon-Gul</creatorcontrib><creatorcontrib>Choi, Hwa-Sup</creatorcontrib><creatorcontrib>Lee, Changjin</creatorcontrib><creatorcontrib>Kang, Youngku</creatorcontrib><creatorcontrib>So, Hye-Mi</creatorcontrib><creatorcontrib>Kim, Jinhee</creatorcontrib><title>Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions</title><title>Low Temperature Physics: Part B (AIP Conference Proceedings Volume 850)</title><description>Molecule-carbon nanotube hybrid devices, utilizing self-assembled monolayer (SAM) of chemically synthesized organic molecules and carbon nanotubes, were fabricated and their electrical properties were measured. Five different kinds of aromatic compounds with the length in the range of 1.4 - 2.2 nm were synthesized and used for the device fabrication. For most of the samples, the two-probe resistance at room temperature was in the range of 20 k - 5 G. We have found that the presence of the SAM between the metal electrode and the carbon nanotube greatly enhances the two-probe conductance, suggesting that the SAM might reduce the energy barrier formed at the metal-carbon nanotube interface. For four out of the five molecules, the room temperature resistance showed no noticeable dependence on the length of the molecule.</description><issn>0094-243X</issn><isbn>0735403473</isbn><isbn>9780735403475</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjz9PwzAUxC0BEm1h4BtkYkt5fnbsZKwiSkEtXUBiq_znWQSFpNjJAJ-eoDKd7qe7k46xGw5LDkrc8SWKokDFz9gctCgkCKnFOZsBVDJHKd4u2TylDwCstC5nbLc2NjbODE3fZavOZ_W7icYNFJufE9yHbNe35MaW8tpEO6Fn0_XDaCnbfE9lnz2NnfvLpit2EUyb6PpfF-x1ff9Sb_Lt_uGxXm3zIy_VkAcjvbIBgyrAGQkWheSWO9CkMeBkeek9FSpQxQWpEAySloQiKI-OxILdnnaPsf8aKQ2HzyY5alvTUT-mA1YoAKfzv0ynUSE</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Moon, Sunkyung</creator><creator>Lee, Soon-Gul</creator><creator>Choi, Hwa-Sup</creator><creator>Lee, Changjin</creator><creator>Kang, Youngku</creator><creator>So, Hye-Mi</creator><creator>Kim, Jinhee</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060101</creationdate><title>Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions</title><author>Moon, Sunkyung ; Lee, Soon-Gul ; Choi, Hwa-Sup ; Lee, Changjin ; Kang, Youngku ; So, Hye-Mi ; Kim, Jinhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-fa4d6bf2f650ca40b2341b1c07e72f2b2318dde56fe913e6ffa2e74e23f6d2ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Sunkyung</creatorcontrib><creatorcontrib>Lee, Soon-Gul</creatorcontrib><creatorcontrib>Choi, Hwa-Sup</creatorcontrib><creatorcontrib>Lee, Changjin</creatorcontrib><creatorcontrib>Kang, Youngku</creatorcontrib><creatorcontrib>So, Hye-Mi</creatorcontrib><creatorcontrib>Kim, Jinhee</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Sunkyung</au><au>Lee, Soon-Gul</au><au>Choi, Hwa-Sup</au><au>Lee, Changjin</au><au>Kang, Youngku</au><au>So, Hye-Mi</au><au>Kim, Jinhee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions</atitle><btitle>Low Temperature Physics: Part B (AIP Conference Proceedings Volume 850)</btitle><date>2006-01-01</date><risdate>2006</risdate><volume>850</volume><spage>1478</spage><epage>1479</epage><pages>1478-1479</pages><issn>0094-243X</issn><isbn>0735403473</isbn><isbn>9780735403475</isbn><abstract>Molecule-carbon nanotube hybrid devices, utilizing self-assembled monolayer (SAM) of chemically synthesized organic molecules and carbon nanotubes, were fabricated and their electrical properties were measured. Five different kinds of aromatic compounds with the length in the range of 1.4 - 2.2 nm were synthesized and used for the device fabrication. For most of the samples, the two-probe resistance at room temperature was in the range of 20 k - 5 G. We have found that the presence of the SAM between the metal electrode and the carbon nanotube greatly enhances the two-probe conductance, suggesting that the SAM might reduce the energy barrier formed at the metal-carbon nanotube interface. For four out of the five molecules, the room temperature resistance showed no noticeable dependence on the length of the molecule.</abstract><doi>10.1063/1.2355261</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | Low Temperature Physics: Part B (AIP Conference Proceedings Volume 850), 2006, Vol.850, p.1478-1479 |
issn | 0094-243X |
language | eng |
recordid | cdi_proquest_miscellaneous_29230240 |
source | AIP Journals Complete |
title | Fabrication And Characterization Of Molecule-Carbon Nanotube Hybrid Junctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fabrication%20And%20Characterization%20Of%20Molecule-Carbon%20Nanotube%20Hybrid%20Junctions&rft.btitle=Low%20Temperature%20Physics:%20Part%20B%20(AIP%20Conference%20Proceedings%20Volume%20850)&rft.au=Moon,%20Sunkyung&rft.date=2006-01-01&rft.volume=850&rft.spage=1478&rft.epage=1479&rft.pages=1478-1479&rft.issn=0094-243X&rft.isbn=0735403473&rft.isbn_list=9780735403475&rft_id=info:doi/10.1063/1.2355261&rft_dat=%3Cproquest%3E29230240%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29230240&rft_id=info:pmid/&rfr_iscdi=true |