Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics
Mixed ion–electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network en...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-02, Vol.18 (5), p.4008-4018 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4018 |
---|---|
container_issue | 5 |
container_start_page | 4008 |
container_title | ACS nano |
container_volume | 18 |
creator | Luo, Jiabei Zhang, Hong Sun, Chuanyue Jing, Yangmin Li, Kerui Li, Yaogang Zhang, Qinghong Wang, Hongzhi Luo, Yang Hou, Chengyi |
description | Mixed ion–electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance ( |
doi_str_mv | 10.1021/acsnano.3c06209 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2922948935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922948935</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-451846a478f43d2b4aca7c95e0c7227119b260324ce7818bbd362afb8c6757833</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EoqUws6GMSCit_yS2M0JVaKUCS5HKZDmOW6WkdrEToBvvwBvyJBg1dGO5O-l-9-m-D4BzBPsIYjSQyhtpbJ8oSDHMDkAXZYTGkNP54X5OUQeceL-CMGWc0WPQIRwzhnHWBc8zu7GVXZZKVtH9XBsdPej63bqXaGRkXukiui8_Qp1Y8_35Naq0qp010dCaolF1-aaj8bZwdqmr6Ka0ut2Xyp-Co4WsvD5rew883Y5mw3E8fbybDK-nscSc1XGSIp5QmTC-SEiB80QqyVSWaqjChwyhLMcUEpwozTjieV4QiuUi54qyYIeQHrjc6W6cfW20r8W69EpXlTTaNl7gLBhNeEbSgA52qHLWe6cXYuPKtXRbgaD4zVO0eYo2z3Bx0Yo3-VoXe_4vwABc7YBwKVa2cSZ4_VfuB6gzge4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922948935</pqid></control><display><type>article</type><title>Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Luo, Jiabei ; Zhang, Hong ; Sun, Chuanyue ; Jing, Yangmin ; Li, Kerui ; Li, Yaogang ; Zhang, Qinghong ; Wang, Hongzhi ; Luo, Yang ; Hou, Chengyi</creator><creatorcontrib>Luo, Jiabei ; Zhang, Hong ; Sun, Chuanyue ; Jing, Yangmin ; Li, Kerui ; Li, Yaogang ; Zhang, Qinghong ; Wang, Hongzhi ; Luo, Yang ; Hou, Chengyi</creatorcontrib><description>Mixed ion–electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (<25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c06209</identifier><identifier>PMID: 38277229</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electric Conductivity ; Electricity ; Electrons ; Hydrogels ; Ions ; Nitrites ; Transition Elements</subject><ispartof>ACS nano, 2024-02, Vol.18 (5), p.4008-4018</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a287t-451846a478f43d2b4aca7c95e0c7227119b260324ce7818bbd362afb8c6757833</cites><orcidid>0000-0003-0933-8932 ; 0000-0002-4373-7665 ; 0000-0002-5469-2327 ; 0000-0002-0166-9027 ; 0000-0003-4142-2982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c06209$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c06209$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38277229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Jiabei</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Sun, Chuanyue</creatorcontrib><creatorcontrib>Jing, Yangmin</creatorcontrib><creatorcontrib>Li, Kerui</creatorcontrib><creatorcontrib>Li, Yaogang</creatorcontrib><creatorcontrib>Zhang, Qinghong</creatorcontrib><creatorcontrib>Wang, Hongzhi</creatorcontrib><creatorcontrib>Luo, Yang</creatorcontrib><creatorcontrib>Hou, Chengyi</creatorcontrib><title>Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Mixed ion–electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (<25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.</description><subject>Electric Conductivity</subject><subject>Electricity</subject><subject>Electrons</subject><subject>Hydrogels</subject><subject>Ions</subject><subject>Nitrites</subject><subject>Transition Elements</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL9OwzAQxi0EoqUws6GMSCit_yS2M0JVaKUCS5HKZDmOW6WkdrEToBvvwBvyJBg1dGO5O-l-9-m-D4BzBPsIYjSQyhtpbJ8oSDHMDkAXZYTGkNP54X5OUQeceL-CMGWc0WPQIRwzhnHWBc8zu7GVXZZKVtH9XBsdPej63bqXaGRkXukiui8_Qp1Y8_35Naq0qp010dCaolF1-aaj8bZwdqmr6Ka0ut2Xyp-Co4WsvD5rew883Y5mw3E8fbybDK-nscSc1XGSIp5QmTC-SEiB80QqyVSWaqjChwyhLMcUEpwozTjieV4QiuUi54qyYIeQHrjc6W6cfW20r8W69EpXlTTaNl7gLBhNeEbSgA52qHLWe6cXYuPKtXRbgaD4zVO0eYo2z3Bx0Yo3-VoXe_4vwABc7YBwKVa2cSZ4_VfuB6gzge4</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Luo, Jiabei</creator><creator>Zhang, Hong</creator><creator>Sun, Chuanyue</creator><creator>Jing, Yangmin</creator><creator>Li, Kerui</creator><creator>Li, Yaogang</creator><creator>Zhang, Qinghong</creator><creator>Wang, Hongzhi</creator><creator>Luo, Yang</creator><creator>Hou, Chengyi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0933-8932</orcidid><orcidid>https://orcid.org/0000-0002-4373-7665</orcidid><orcidid>https://orcid.org/0000-0002-5469-2327</orcidid><orcidid>https://orcid.org/0000-0002-0166-9027</orcidid><orcidid>https://orcid.org/0000-0003-4142-2982</orcidid></search><sort><creationdate>20240206</creationdate><title>Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics</title><author>Luo, Jiabei ; Zhang, Hong ; Sun, Chuanyue ; Jing, Yangmin ; Li, Kerui ; Li, Yaogang ; Zhang, Qinghong ; Wang, Hongzhi ; Luo, Yang ; Hou, Chengyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-451846a478f43d2b4aca7c95e0c7227119b260324ce7818bbd362afb8c6757833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electric Conductivity</topic><topic>Electricity</topic><topic>Electrons</topic><topic>Hydrogels</topic><topic>Ions</topic><topic>Nitrites</topic><topic>Transition Elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jiabei</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Sun, Chuanyue</creatorcontrib><creatorcontrib>Jing, Yangmin</creatorcontrib><creatorcontrib>Li, Kerui</creatorcontrib><creatorcontrib>Li, Yaogang</creatorcontrib><creatorcontrib>Zhang, Qinghong</creatorcontrib><creatorcontrib>Wang, Hongzhi</creatorcontrib><creatorcontrib>Luo, Yang</creatorcontrib><creatorcontrib>Hou, Chengyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jiabei</au><au>Zhang, Hong</au><au>Sun, Chuanyue</au><au>Jing, Yangmin</au><au>Li, Kerui</au><au>Li, Yaogang</au><au>Zhang, Qinghong</au><au>Wang, Hongzhi</au><au>Luo, Yang</au><au>Hou, Chengyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-02-06</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><spage>4008</spage><epage>4018</epage><pages>4008-4018</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Mixed ion–electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (<25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38277229</pmid><doi>10.1021/acsnano.3c06209</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0933-8932</orcidid><orcidid>https://orcid.org/0000-0002-4373-7665</orcidid><orcidid>https://orcid.org/0000-0002-5469-2327</orcidid><orcidid>https://orcid.org/0000-0002-0166-9027</orcidid><orcidid>https://orcid.org/0000-0003-4142-2982</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-02, Vol.18 (5), p.4008-4018 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2922948935 |
source | MEDLINE; ACS Publications |
subjects | Electric Conductivity Electricity Electrons Hydrogels Ions Nitrites Transition Elements |
title | Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20MXene%20Network%20Enabled%20Mixed%20Ion%E2%80%93Electron%20Conductive%20Hydrogel%20Bioelectronics&rft.jtitle=ACS%20nano&rft.au=Luo,%20Jiabei&rft.date=2024-02-06&rft.volume=18&rft.issue=5&rft.spage=4008&rft.epage=4018&rft.pages=4008-4018&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c06209&rft_dat=%3Cproquest_cross%3E2922948935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922948935&rft_id=info:pmid/38277229&rfr_iscdi=true |