Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics

Mixed ion–electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-02, Vol.18 (5), p.4008-4018
Hauptverfasser: Luo, Jiabei, Zhang, Hong, Sun, Chuanyue, Jing, Yangmin, Li, Kerui, Li, Yaogang, Zhang, Qinghong, Wang, Hongzhi, Luo, Yang, Hou, Chengyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4018
container_issue 5
container_start_page 4008
container_title ACS nano
container_volume 18
creator Luo, Jiabei
Zhang, Hong
Sun, Chuanyue
Jing, Yangmin
Li, Kerui
Li, Yaogang
Zhang, Qinghong
Wang, Hongzhi
Luo, Yang
Hou, Chengyi
description Mixed ion–electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (
doi_str_mv 10.1021/acsnano.3c06209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2922948935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922948935</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-451846a478f43d2b4aca7c95e0c7227119b260324ce7818bbd362afb8c6757833</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EoqUws6GMSCit_yS2M0JVaKUCS5HKZDmOW6WkdrEToBvvwBvyJBg1dGO5O-l-9-m-D4BzBPsIYjSQyhtpbJ8oSDHMDkAXZYTGkNP54X5OUQeceL-CMGWc0WPQIRwzhnHWBc8zu7GVXZZKVtH9XBsdPej63bqXaGRkXukiui8_Qp1Y8_35Naq0qp010dCaolF1-aaj8bZwdqmr6Ka0ut2Xyp-Co4WsvD5rew883Y5mw3E8fbybDK-nscSc1XGSIp5QmTC-SEiB80QqyVSWaqjChwyhLMcUEpwozTjieV4QiuUi54qyYIeQHrjc6W6cfW20r8W69EpXlTTaNl7gLBhNeEbSgA52qHLWe6cXYuPKtXRbgaD4zVO0eYo2z3Bx0Yo3-VoXe_4vwABc7YBwKVa2cSZ4_VfuB6gzge4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922948935</pqid></control><display><type>article</type><title>Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Luo, Jiabei ; Zhang, Hong ; Sun, Chuanyue ; Jing, Yangmin ; Li, Kerui ; Li, Yaogang ; Zhang, Qinghong ; Wang, Hongzhi ; Luo, Yang ; Hou, Chengyi</creator><creatorcontrib>Luo, Jiabei ; Zhang, Hong ; Sun, Chuanyue ; Jing, Yangmin ; Li, Kerui ; Li, Yaogang ; Zhang, Qinghong ; Wang, Hongzhi ; Luo, Yang ; Hou, Chengyi</creatorcontrib><description>Mixed ion–electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (&lt;25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c06209</identifier><identifier>PMID: 38277229</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electric Conductivity ; Electricity ; Electrons ; Hydrogels ; Ions ; Nitrites ; Transition Elements</subject><ispartof>ACS nano, 2024-02, Vol.18 (5), p.4008-4018</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a287t-451846a478f43d2b4aca7c95e0c7227119b260324ce7818bbd362afb8c6757833</cites><orcidid>0000-0003-0933-8932 ; 0000-0002-4373-7665 ; 0000-0002-5469-2327 ; 0000-0002-0166-9027 ; 0000-0003-4142-2982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c06209$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c06209$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38277229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Jiabei</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Sun, Chuanyue</creatorcontrib><creatorcontrib>Jing, Yangmin</creatorcontrib><creatorcontrib>Li, Kerui</creatorcontrib><creatorcontrib>Li, Yaogang</creatorcontrib><creatorcontrib>Zhang, Qinghong</creatorcontrib><creatorcontrib>Wang, Hongzhi</creatorcontrib><creatorcontrib>Luo, Yang</creatorcontrib><creatorcontrib>Hou, Chengyi</creatorcontrib><title>Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Mixed ion–electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (&lt;25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.</description><subject>Electric Conductivity</subject><subject>Electricity</subject><subject>Electrons</subject><subject>Hydrogels</subject><subject>Ions</subject><subject>Nitrites</subject><subject>Transition Elements</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL9OwzAQxi0EoqUws6GMSCit_yS2M0JVaKUCS5HKZDmOW6WkdrEToBvvwBvyJBg1dGO5O-l-9-m-D4BzBPsIYjSQyhtpbJ8oSDHMDkAXZYTGkNP54X5OUQeceL-CMGWc0WPQIRwzhnHWBc8zu7GVXZZKVtH9XBsdPej63bqXaGRkXukiui8_Qp1Y8_35Naq0qp010dCaolF1-aaj8bZwdqmr6Ka0ut2Xyp-Co4WsvD5rew883Y5mw3E8fbybDK-nscSc1XGSIp5QmTC-SEiB80QqyVSWaqjChwyhLMcUEpwozTjieV4QiuUi54qyYIeQHrjc6W6cfW20r8W69EpXlTTaNl7gLBhNeEbSgA52qHLWe6cXYuPKtXRbgaD4zVO0eYo2z3Bx0Yo3-VoXe_4vwABc7YBwKVa2cSZ4_VfuB6gzge4</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Luo, Jiabei</creator><creator>Zhang, Hong</creator><creator>Sun, Chuanyue</creator><creator>Jing, Yangmin</creator><creator>Li, Kerui</creator><creator>Li, Yaogang</creator><creator>Zhang, Qinghong</creator><creator>Wang, Hongzhi</creator><creator>Luo, Yang</creator><creator>Hou, Chengyi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0933-8932</orcidid><orcidid>https://orcid.org/0000-0002-4373-7665</orcidid><orcidid>https://orcid.org/0000-0002-5469-2327</orcidid><orcidid>https://orcid.org/0000-0002-0166-9027</orcidid><orcidid>https://orcid.org/0000-0003-4142-2982</orcidid></search><sort><creationdate>20240206</creationdate><title>Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics</title><author>Luo, Jiabei ; Zhang, Hong ; Sun, Chuanyue ; Jing, Yangmin ; Li, Kerui ; Li, Yaogang ; Zhang, Qinghong ; Wang, Hongzhi ; Luo, Yang ; Hou, Chengyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-451846a478f43d2b4aca7c95e0c7227119b260324ce7818bbd362afb8c6757833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electric Conductivity</topic><topic>Electricity</topic><topic>Electrons</topic><topic>Hydrogels</topic><topic>Ions</topic><topic>Nitrites</topic><topic>Transition Elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jiabei</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Sun, Chuanyue</creatorcontrib><creatorcontrib>Jing, Yangmin</creatorcontrib><creatorcontrib>Li, Kerui</creatorcontrib><creatorcontrib>Li, Yaogang</creatorcontrib><creatorcontrib>Zhang, Qinghong</creatorcontrib><creatorcontrib>Wang, Hongzhi</creatorcontrib><creatorcontrib>Luo, Yang</creatorcontrib><creatorcontrib>Hou, Chengyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jiabei</au><au>Zhang, Hong</au><au>Sun, Chuanyue</au><au>Jing, Yangmin</au><au>Li, Kerui</au><au>Li, Yaogang</au><au>Zhang, Qinghong</au><au>Wang, Hongzhi</au><au>Luo, Yang</au><au>Hou, Chengyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-02-06</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><spage>4008</spage><epage>4018</epage><pages>4008-4018</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Mixed ion–electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (&lt;25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38277229</pmid><doi>10.1021/acsnano.3c06209</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0933-8932</orcidid><orcidid>https://orcid.org/0000-0002-4373-7665</orcidid><orcidid>https://orcid.org/0000-0002-5469-2327</orcidid><orcidid>https://orcid.org/0000-0002-0166-9027</orcidid><orcidid>https://orcid.org/0000-0003-4142-2982</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-02, Vol.18 (5), p.4008-4018
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2922948935
source MEDLINE; ACS Publications
subjects Electric Conductivity
Electricity
Electrons
Hydrogels
Ions
Nitrites
Transition Elements
title Topological MXene Network Enabled Mixed Ion–Electron Conductive Hydrogel Bioelectronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20MXene%20Network%20Enabled%20Mixed%20Ion%E2%80%93Electron%20Conductive%20Hydrogel%20Bioelectronics&rft.jtitle=ACS%20nano&rft.au=Luo,%20Jiabei&rft.date=2024-02-06&rft.volume=18&rft.issue=5&rft.spage=4008&rft.epage=4018&rft.pages=4008-4018&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c06209&rft_dat=%3Cproquest_cross%3E2922948935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922948935&rft_id=info:pmid/38277229&rfr_iscdi=true