Fiber optics for atmospheric mine monitoring

The authors describe work done to address methane, carbon monoxide, and distributed temperature monitoring. A review is made of the potential and problems of using fiber optics (FOs) for mine monitoring systems. Methane detection is based on differential absorption of infrared light. A methane monit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 1993-07, Vol.29 (4), p.749-754
Hauptverfasser: Dubaniewicz, T.H., Chilton, J.E., Dobroski, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 4
container_start_page 749
container_title IEEE transactions on industry applications
container_volume 29
creator Dubaniewicz, T.H.
Chilton, J.E.
Dobroski, H.
description The authors describe work done to address methane, carbon monoxide, and distributed temperature monitoring. A review is made of the potential and problems of using fiber optics (FOs) for mine monitoring systems. Methane detection is based on differential absorption of infrared light. A methane monitor that can detect concentrations as low as 0.2% as far away as 2 km via FO cable is described. A carbon monoxide monitoring system that combines a low-powered electrochemical cell with fiber optic (FO) telemetry is described. Testing has shown that the system can operate maintenance free for several months. A distributed FO temperature-monitoring system is being investigated for possible application in mine fire detection. Performance of this system at the US Bureau of Mines' Lake Lynn Laboratory is reported. The sensor employs optical time domain reflectometry techniques that allow the entire length of fiber (up to 2 km) to function as a distributed temperature sensor. Distributed temperature sensors have considerable potential for monitoring areas such as conveyor beltways.< >
doi_str_mv 10.1109/28.231989
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29228533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>231989</ieee_id><sourcerecordid>28262707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-1c65be0036417dabc381a6ae64c4a80e14eb9587a56e6184068a364a20e3f1653</originalsourceid><addsrcrecordid>eNqF0DtLxEAUBeBBFFwfha1VChEEs877UcriqrBgo3W4GW90JMnEmWzhvzeSZVurW9zvnOIQcsHokjHq7rhdcsGcdQdkwZxwpRPaHJIFpU6Uzjl5TE5y_qKUScXkgtyuQ42piMMYfC6amAoYu5iHT0zBF13osehiH8aYQv9xRo4aaDOe7-4peVs_vK6eys3L4_PqflN6IcxYMq9VjZQKLZl5h9oLy0ADauklWIpMYu2UNaA0amYl1RYmC5yiaJhW4pRcz71Dit9bzGPVheyxbaHHuM0Vd5xbJcT_0HLNDTUTvJmhTzHnhE01pNBB-qkYrf6Gm2g1DzfZq10pZA9tk6D3Ie8DwipjtJ7Y5cwCIu6_u45fhLhzCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28262707</pqid></control><display><type>article</type><title>Fiber optics for atmospheric mine monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Dubaniewicz, T.H. ; Chilton, J.E. ; Dobroski, H.</creator><creatorcontrib>Dubaniewicz, T.H. ; Chilton, J.E. ; Dobroski, H.</creatorcontrib><description>The authors describe work done to address methane, carbon monoxide, and distributed temperature monitoring. A review is made of the potential and problems of using fiber optics (FOs) for mine monitoring systems. Methane detection is based on differential absorption of infrared light. A methane monitor that can detect concentrations as low as 0.2% as far away as 2 km via FO cable is described. A carbon monoxide monitoring system that combines a low-powered electrochemical cell with fiber optic (FO) telemetry is described. Testing has shown that the system can operate maintenance free for several months. A distributed FO temperature-monitoring system is being investigated for possible application in mine fire detection. Performance of this system at the US Bureau of Mines' Lake Lynn Laboratory is reported. The sensor employs optical time domain reflectometry techniques that allow the entire length of fiber (up to 2 km) to function as a distributed temperature sensor. Distributed temperature sensors have considerable potential for monitoring areas such as conveyor beltways.&lt; &gt;</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/28.231989</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Analytical chemistry ; Chemistry ; Electromagnetic wave absorption ; Exact sciences and technology ; General, instrumentation ; Infrared detectors ; Monitoring ; Optical fiber cables ; Optical fiber sensors ; Optical fibers ; Optical sensors ; Telemetry ; Temperature measurement ; Temperature sensors</subject><ispartof>IEEE transactions on industry applications, 1993-07, Vol.29 (4), p.749-754</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-1c65be0036417dabc381a6ae64c4a80e14eb9587a56e6184068a364a20e3f1653</citedby><cites>FETCH-LOGICAL-c337t-1c65be0036417dabc381a6ae64c4a80e14eb9587a56e6184068a364a20e3f1653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/231989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23932,23933,25142,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/231989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3857766$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubaniewicz, T.H.</creatorcontrib><creatorcontrib>Chilton, J.E.</creatorcontrib><creatorcontrib>Dobroski, H.</creatorcontrib><title>Fiber optics for atmospheric mine monitoring</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>The authors describe work done to address methane, carbon monoxide, and distributed temperature monitoring. A review is made of the potential and problems of using fiber optics (FOs) for mine monitoring systems. Methane detection is based on differential absorption of infrared light. A methane monitor that can detect concentrations as low as 0.2% as far away as 2 km via FO cable is described. A carbon monoxide monitoring system that combines a low-powered electrochemical cell with fiber optic (FO) telemetry is described. Testing has shown that the system can operate maintenance free for several months. A distributed FO temperature-monitoring system is being investigated for possible application in mine fire detection. Performance of this system at the US Bureau of Mines' Lake Lynn Laboratory is reported. The sensor employs optical time domain reflectometry techniques that allow the entire length of fiber (up to 2 km) to function as a distributed temperature sensor. Distributed temperature sensors have considerable potential for monitoring areas such as conveyor beltways.&lt; &gt;</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Electromagnetic wave absorption</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Infrared detectors</subject><subject>Monitoring</subject><subject>Optical fiber cables</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical sensors</subject><subject>Telemetry</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqF0DtLxEAUBeBBFFwfha1VChEEs877UcriqrBgo3W4GW90JMnEmWzhvzeSZVurW9zvnOIQcsHokjHq7rhdcsGcdQdkwZxwpRPaHJIFpU6Uzjl5TE5y_qKUScXkgtyuQ42piMMYfC6amAoYu5iHT0zBF13osehiH8aYQv9xRo4aaDOe7-4peVs_vK6eys3L4_PqflN6IcxYMq9VjZQKLZl5h9oLy0ADauklWIpMYu2UNaA0amYl1RYmC5yiaJhW4pRcz71Dit9bzGPVheyxbaHHuM0Vd5xbJcT_0HLNDTUTvJmhTzHnhE01pNBB-qkYrf6Gm2g1DzfZq10pZA9tk6D3Ie8DwipjtJ7Y5cwCIu6_u45fhLhzCQ</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Dubaniewicz, T.H.</creator><creator>Chilton, J.E.</creator><creator>Dobroski, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19930701</creationdate><title>Fiber optics for atmospheric mine monitoring</title><author>Dubaniewicz, T.H. ; Chilton, J.E. ; Dobroski, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-1c65be0036417dabc381a6ae64c4a80e14eb9587a56e6184068a364a20e3f1653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Electromagnetic wave absorption</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Infrared detectors</topic><topic>Monitoring</topic><topic>Optical fiber cables</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical sensors</topic><topic>Telemetry</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubaniewicz, T.H.</creatorcontrib><creatorcontrib>Chilton, J.E.</creatorcontrib><creatorcontrib>Dobroski, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dubaniewicz, T.H.</au><au>Chilton, J.E.</au><au>Dobroski, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber optics for atmospheric mine monitoring</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>1993-07-01</date><risdate>1993</risdate><volume>29</volume><issue>4</issue><spage>749</spage><epage>754</epage><pages>749-754</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>The authors describe work done to address methane, carbon monoxide, and distributed temperature monitoring. A review is made of the potential and problems of using fiber optics (FOs) for mine monitoring systems. Methane detection is based on differential absorption of infrared light. A methane monitor that can detect concentrations as low as 0.2% as far away as 2 km via FO cable is described. A carbon monoxide monitoring system that combines a low-powered electrochemical cell with fiber optic (FO) telemetry is described. Testing has shown that the system can operate maintenance free for several months. A distributed FO temperature-monitoring system is being investigated for possible application in mine fire detection. Performance of this system at the US Bureau of Mines' Lake Lynn Laboratory is reported. The sensor employs optical time domain reflectometry techniques that allow the entire length of fiber (up to 2 km) to function as a distributed temperature sensor. Distributed temperature sensors have considerable potential for monitoring areas such as conveyor beltways.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/28.231989</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 1993-07, Vol.29 (4), p.749-754
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_miscellaneous_29228533
source IEEE Electronic Library (IEL)
subjects Analytical chemistry
Chemistry
Electromagnetic wave absorption
Exact sciences and technology
General, instrumentation
Infrared detectors
Monitoring
Optical fiber cables
Optical fiber sensors
Optical fibers
Optical sensors
Telemetry
Temperature measurement
Temperature sensors
title Fiber optics for atmospheric mine monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20optics%20for%20atmospheric%20mine%20monitoring&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Dubaniewicz,%20T.H.&rft.date=1993-07-01&rft.volume=29&rft.issue=4&rft.spage=749&rft.epage=754&rft.pages=749-754&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/28.231989&rft_dat=%3Cproquest_RIE%3E28262707%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28262707&rft_id=info:pmid/&rft_ieee_id=231989&rfr_iscdi=true