Fiber optics for atmospheric mine monitoring
The authors describe work done to address methane, carbon monoxide, and distributed temperature monitoring. A review is made of the potential and problems of using fiber optics (FOs) for mine monitoring systems. Methane detection is based on differential absorption of infrared light. A methane monit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 1993-07, Vol.29 (4), p.749-754 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 754 |
---|---|
container_issue | 4 |
container_start_page | 749 |
container_title | IEEE transactions on industry applications |
container_volume | 29 |
creator | Dubaniewicz, T.H. Chilton, J.E. Dobroski, H. |
description | The authors describe work done to address methane, carbon monoxide, and distributed temperature monitoring. A review is made of the potential and problems of using fiber optics (FOs) for mine monitoring systems. Methane detection is based on differential absorption of infrared light. A methane monitor that can detect concentrations as low as 0.2% as far away as 2 km via FO cable is described. A carbon monoxide monitoring system that combines a low-powered electrochemical cell with fiber optic (FO) telemetry is described. Testing has shown that the system can operate maintenance free for several months. A distributed FO temperature-monitoring system is being investigated for possible application in mine fire detection. Performance of this system at the US Bureau of Mines' Lake Lynn Laboratory is reported. The sensor employs optical time domain reflectometry techniques that allow the entire length of fiber (up to 2 km) to function as a distributed temperature sensor. Distributed temperature sensors have considerable potential for monitoring areas such as conveyor beltways.< > |
doi_str_mv | 10.1109/28.231989 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29228533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>231989</ieee_id><sourcerecordid>28262707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-1c65be0036417dabc381a6ae64c4a80e14eb9587a56e6184068a364a20e3f1653</originalsourceid><addsrcrecordid>eNqF0DtLxEAUBeBBFFwfha1VChEEs877UcriqrBgo3W4GW90JMnEmWzhvzeSZVurW9zvnOIQcsHokjHq7rhdcsGcdQdkwZxwpRPaHJIFpU6Uzjl5TE5y_qKUScXkgtyuQ42piMMYfC6amAoYu5iHT0zBF13osehiH8aYQv9xRo4aaDOe7-4peVs_vK6eys3L4_PqflN6IcxYMq9VjZQKLZl5h9oLy0ADauklWIpMYu2UNaA0amYl1RYmC5yiaJhW4pRcz71Dit9bzGPVheyxbaHHuM0Vd5xbJcT_0HLNDTUTvJmhTzHnhE01pNBB-qkYrf6Gm2g1DzfZq10pZA9tk6D3Ie8DwipjtJ7Y5cwCIu6_u45fhLhzCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28262707</pqid></control><display><type>article</type><title>Fiber optics for atmospheric mine monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Dubaniewicz, T.H. ; Chilton, J.E. ; Dobroski, H.</creator><creatorcontrib>Dubaniewicz, T.H. ; Chilton, J.E. ; Dobroski, H.</creatorcontrib><description>The authors describe work done to address methane, carbon monoxide, and distributed temperature monitoring. A review is made of the potential and problems of using fiber optics (FOs) for mine monitoring systems. Methane detection is based on differential absorption of infrared light. A methane monitor that can detect concentrations as low as 0.2% as far away as 2 km via FO cable is described. A carbon monoxide monitoring system that combines a low-powered electrochemical cell with fiber optic (FO) telemetry is described. Testing has shown that the system can operate maintenance free for several months. A distributed FO temperature-monitoring system is being investigated for possible application in mine fire detection. Performance of this system at the US Bureau of Mines' Lake Lynn Laboratory is reported. The sensor employs optical time domain reflectometry techniques that allow the entire length of fiber (up to 2 km) to function as a distributed temperature sensor. Distributed temperature sensors have considerable potential for monitoring areas such as conveyor beltways.< ></description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/28.231989</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Analytical chemistry ; Chemistry ; Electromagnetic wave absorption ; Exact sciences and technology ; General, instrumentation ; Infrared detectors ; Monitoring ; Optical fiber cables ; Optical fiber sensors ; Optical fibers ; Optical sensors ; Telemetry ; Temperature measurement ; Temperature sensors</subject><ispartof>IEEE transactions on industry applications, 1993-07, Vol.29 (4), p.749-754</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-1c65be0036417dabc381a6ae64c4a80e14eb9587a56e6184068a364a20e3f1653</citedby><cites>FETCH-LOGICAL-c337t-1c65be0036417dabc381a6ae64c4a80e14eb9587a56e6184068a364a20e3f1653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/231989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23932,23933,25142,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/231989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3857766$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubaniewicz, T.H.</creatorcontrib><creatorcontrib>Chilton, J.E.</creatorcontrib><creatorcontrib>Dobroski, H.</creatorcontrib><title>Fiber optics for atmospheric mine monitoring</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>The authors describe work done to address methane, carbon monoxide, and distributed temperature monitoring. A review is made of the potential and problems of using fiber optics (FOs) for mine monitoring systems. Methane detection is based on differential absorption of infrared light. A methane monitor that can detect concentrations as low as 0.2% as far away as 2 km via FO cable is described. A carbon monoxide monitoring system that combines a low-powered electrochemical cell with fiber optic (FO) telemetry is described. Testing has shown that the system can operate maintenance free for several months. A distributed FO temperature-monitoring system is being investigated for possible application in mine fire detection. Performance of this system at the US Bureau of Mines' Lake Lynn Laboratory is reported. The sensor employs optical time domain reflectometry techniques that allow the entire length of fiber (up to 2 km) to function as a distributed temperature sensor. Distributed temperature sensors have considerable potential for monitoring areas such as conveyor beltways.< ></description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Electromagnetic wave absorption</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Infrared detectors</subject><subject>Monitoring</subject><subject>Optical fiber cables</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical sensors</subject><subject>Telemetry</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqF0DtLxEAUBeBBFFwfha1VChEEs877UcriqrBgo3W4GW90JMnEmWzhvzeSZVurW9zvnOIQcsHokjHq7rhdcsGcdQdkwZxwpRPaHJIFpU6Uzjl5TE5y_qKUScXkgtyuQ42piMMYfC6amAoYu5iHT0zBF13osehiH8aYQv9xRo4aaDOe7-4peVs_vK6eys3L4_PqflN6IcxYMq9VjZQKLZl5h9oLy0ADauklWIpMYu2UNaA0amYl1RYmC5yiaJhW4pRcz71Dit9bzGPVheyxbaHHuM0Vd5xbJcT_0HLNDTUTvJmhTzHnhE01pNBB-qkYrf6Gm2g1DzfZq10pZA9tk6D3Ie8DwipjtJ7Y5cwCIu6_u45fhLhzCQ</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Dubaniewicz, T.H.</creator><creator>Chilton, J.E.</creator><creator>Dobroski, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19930701</creationdate><title>Fiber optics for atmospheric mine monitoring</title><author>Dubaniewicz, T.H. ; Chilton, J.E. ; Dobroski, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-1c65be0036417dabc381a6ae64c4a80e14eb9587a56e6184068a364a20e3f1653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Electromagnetic wave absorption</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Infrared detectors</topic><topic>Monitoring</topic><topic>Optical fiber cables</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical sensors</topic><topic>Telemetry</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubaniewicz, T.H.</creatorcontrib><creatorcontrib>Chilton, J.E.</creatorcontrib><creatorcontrib>Dobroski, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dubaniewicz, T.H.</au><au>Chilton, J.E.</au><au>Dobroski, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber optics for atmospheric mine monitoring</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>1993-07-01</date><risdate>1993</risdate><volume>29</volume><issue>4</issue><spage>749</spage><epage>754</epage><pages>749-754</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>The authors describe work done to address methane, carbon monoxide, and distributed temperature monitoring. A review is made of the potential and problems of using fiber optics (FOs) for mine monitoring systems. Methane detection is based on differential absorption of infrared light. A methane monitor that can detect concentrations as low as 0.2% as far away as 2 km via FO cable is described. A carbon monoxide monitoring system that combines a low-powered electrochemical cell with fiber optic (FO) telemetry is described. Testing has shown that the system can operate maintenance free for several months. A distributed FO temperature-monitoring system is being investigated for possible application in mine fire detection. Performance of this system at the US Bureau of Mines' Lake Lynn Laboratory is reported. The sensor employs optical time domain reflectometry techniques that allow the entire length of fiber (up to 2 km) to function as a distributed temperature sensor. Distributed temperature sensors have considerable potential for monitoring areas such as conveyor beltways.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/28.231989</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 1993-07, Vol.29 (4), p.749-754 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_miscellaneous_29228533 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical chemistry Chemistry Electromagnetic wave absorption Exact sciences and technology General, instrumentation Infrared detectors Monitoring Optical fiber cables Optical fiber sensors Optical fibers Optical sensors Telemetry Temperature measurement Temperature sensors |
title | Fiber optics for atmospheric mine monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20optics%20for%20atmospheric%20mine%20monitoring&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Dubaniewicz,%20T.H.&rft.date=1993-07-01&rft.volume=29&rft.issue=4&rft.spage=749&rft.epage=754&rft.pages=749-754&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/28.231989&rft_dat=%3Cproquest_RIE%3E28262707%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28262707&rft_id=info:pmid/&rft_ieee_id=231989&rfr_iscdi=true |