Development of a Locally Analytic Prolongation Operator in the Two-Grid, Three-Level Method for the Navier-Stokes Equations

In this article, two three-level methods employing the same prolongation operator are proposed for efficiently solving the incompressible Navier-Stokes equations in a two-grid system. Each method involves solving one smaller system of nonlinear equations in the coarse mesh. The chosen Newton- or Ose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical heat transfer. Part B, Fundamentals Fundamentals, 2006-12, Vol.50 (6), p.517-533
Hauptverfasser: Sheu, Tony W. H., Lin, R. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 6
container_start_page 517
container_title Numerical heat transfer. Part B, Fundamentals
container_volume 50
creator Sheu, Tony W. H.
Lin, R. K.
description In this article, two three-level methods employing the same prolongation operator are proposed for efficiently solving the incompressible Navier-Stokes equations in a two-grid system. Each method involves solving one smaller system of nonlinear equations in the coarse mesh. The chosen Newton- or Oseen-type linearized momentum equations along with a correction step are solved only once on the fine mesh. Within the three-level framework, the locally analytic prolongation operator needed to bridge the convergent Navier-Stokes solutions obtained at the coarse mesh and the interpolated velocities at the fine mesh is developed to improve the prediction quality. To increase prediction accuracy, the linearized momentum equations are discretized within the alternating direction implicit context using our previously developed nodally exact convection-diffusion-reaction finite-difference scheme. Two proposed three-level methods are rigorously assessed in terms of simulated accuracy, nonlinear convergence rate, and elapsed CPU time.
doi_str_mv 10.1080/10407790600681351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29227551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29227551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-8cd7756fc667f1cfcc49d85a47139f5226ece228ee295deb2a36ab1be0191c523</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhgdR8PoA7rLRlaO5TDIz4Ea8VKFewLoe0syJjaaTmqRq8eVNbcWFoNmcwPm-P-TPsl2CDwmu8BHBBS7LGguMRUUYJyvZBuGU5FhQsZruaZ_PgfVsM4QnnE7Bio3s4wxewbrJGLqInEYS9Z2S1s7QSSftLBqF7ryzrnuU0bgO3U7Ay-g8Mh2KI0CDN5f3vGkP0GDkAfL-PA5dQxy5FunEzaEb-WrA5_fRPUNA5y_Tr6ywna1paQPsLOdW9nBxPji9zPu3vavTk36u0p9iXqm2LLnQSohSE6WVKuq24rIoCas1p1SAAkorAFrzFoZUMiGHZAiY1ERxyray_UXuxLuXKYTYjE1QYK3swE1DQ2tKS85JAskCVN6F4EE3E2_G0s8agpt5zc2vmpOztwyXIRWnveyUCT9ixQQrKEvc8YIzXaplLN-ct20T5cw6_y2xv54p_9V_WU18j-wTIFii4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29227551</pqid></control><display><type>article</type><title>Development of a Locally Analytic Prolongation Operator in the Two-Grid, Three-Level Method for the Navier-Stokes Equations</title><source>Taylor &amp; Francis Journals Complete</source><creator>Sheu, Tony W. H. ; Lin, R. K.</creator><creatorcontrib>Sheu, Tony W. H. ; Lin, R. K.</creatorcontrib><description>In this article, two three-level methods employing the same prolongation operator are proposed for efficiently solving the incompressible Navier-Stokes equations in a two-grid system. Each method involves solving one smaller system of nonlinear equations in the coarse mesh. The chosen Newton- or Oseen-type linearized momentum equations along with a correction step are solved only once on the fine mesh. Within the three-level framework, the locally analytic prolongation operator needed to bridge the convergent Navier-Stokes solutions obtained at the coarse mesh and the interpolated velocities at the fine mesh is developed to improve the prediction quality. To increase prediction accuracy, the linearized momentum equations are discretized within the alternating direction implicit context using our previously developed nodally exact convection-diffusion-reaction finite-difference scheme. Two proposed three-level methods are rigorously assessed in terms of simulated accuracy, nonlinear convergence rate, and elapsed CPU time.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407790600681351</identifier><identifier>CODEN: NHBFEE</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 2006-12, Vol.50 (6), p.517-533</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-8cd7756fc667f1cfcc49d85a47139f5226ece228ee295deb2a36ab1be0191c523</citedby><cites>FETCH-LOGICAL-c407t-8cd7756fc667f1cfcc49d85a47139f5226ece228ee295deb2a36ab1be0191c523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10407790600681351$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10407790600681351$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18363423$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheu, Tony W. H.</creatorcontrib><creatorcontrib>Lin, R. K.</creatorcontrib><title>Development of a Locally Analytic Prolongation Operator in the Two-Grid, Three-Level Method for the Navier-Stokes Equations</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>In this article, two three-level methods employing the same prolongation operator are proposed for efficiently solving the incompressible Navier-Stokes equations in a two-grid system. Each method involves solving one smaller system of nonlinear equations in the coarse mesh. The chosen Newton- or Oseen-type linearized momentum equations along with a correction step are solved only once on the fine mesh. Within the three-level framework, the locally analytic prolongation operator needed to bridge the convergent Navier-Stokes solutions obtained at the coarse mesh and the interpolated velocities at the fine mesh is developed to improve the prediction quality. To increase prediction accuracy, the linearized momentum equations are discretized within the alternating direction implicit context using our previously developed nodally exact convection-diffusion-reaction finite-difference scheme. Two proposed three-level methods are rigorously assessed in terms of simulated accuracy, nonlinear convergence rate, and elapsed CPU time.</description><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhgdR8PoA7rLRlaO5TDIz4Ea8VKFewLoe0syJjaaTmqRq8eVNbcWFoNmcwPm-P-TPsl2CDwmu8BHBBS7LGguMRUUYJyvZBuGU5FhQsZruaZ_PgfVsM4QnnE7Bio3s4wxewbrJGLqInEYS9Z2S1s7QSSftLBqF7ryzrnuU0bgO3U7Ay-g8Mh2KI0CDN5f3vGkP0GDkAfL-PA5dQxy5FunEzaEb-WrA5_fRPUNA5y_Tr6ywna1paQPsLOdW9nBxPji9zPu3vavTk36u0p9iXqm2LLnQSohSE6WVKuq24rIoCas1p1SAAkorAFrzFoZUMiGHZAiY1ERxyray_UXuxLuXKYTYjE1QYK3swE1DQ2tKS85JAskCVN6F4EE3E2_G0s8agpt5zc2vmpOztwyXIRWnveyUCT9ixQQrKEvc8YIzXaplLN-ct20T5cw6_y2xv54p_9V_WU18j-wTIFii4w</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Sheu, Tony W. H.</creator><creator>Lin, R. K.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061201</creationdate><title>Development of a Locally Analytic Prolongation Operator in the Two-Grid, Three-Level Method for the Navier-Stokes Equations</title><author>Sheu, Tony W. H. ; Lin, R. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-8cd7756fc667f1cfcc49d85a47139f5226ece228ee295deb2a36ab1be0191c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheu, Tony W. H.</creatorcontrib><creatorcontrib>Lin, R. K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheu, Tony W. H.</au><au>Lin, R. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Locally Analytic Prolongation Operator in the Two-Grid, Three-Level Method for the Navier-Stokes Equations</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>50</volume><issue>6</issue><spage>517</spage><epage>533</epage><pages>517-533</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><coden>NHBFEE</coden><abstract>In this article, two three-level methods employing the same prolongation operator are proposed for efficiently solving the incompressible Navier-Stokes equations in a two-grid system. Each method involves solving one smaller system of nonlinear equations in the coarse mesh. The chosen Newton- or Oseen-type linearized momentum equations along with a correction step are solved only once on the fine mesh. Within the three-level framework, the locally analytic prolongation operator needed to bridge the convergent Navier-Stokes solutions obtained at the coarse mesh and the interpolated velocities at the fine mesh is developed to improve the prediction quality. To increase prediction accuracy, the linearized momentum equations are discretized within the alternating direction implicit context using our previously developed nodally exact convection-diffusion-reaction finite-difference scheme. Two proposed three-level methods are rigorously assessed in terms of simulated accuracy, nonlinear convergence rate, and elapsed CPU time.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10407790600681351</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-7790
ispartof Numerical heat transfer. Part B, Fundamentals, 2006-12, Vol.50 (6), p.517-533
issn 1040-7790
1521-0626
language eng
recordid cdi_proquest_miscellaneous_29227551
source Taylor & Francis Journals Complete
subjects Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
title Development of a Locally Analytic Prolongation Operator in the Two-Grid, Three-Level Method for the Navier-Stokes Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Locally%20Analytic%20Prolongation%20Operator%20in%20the%20Two-Grid,%20Three-Level%20Method%20for%20the%20Navier-Stokes%20Equations&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=Sheu,%20Tony%20W.%20H.&rft.date=2006-12-01&rft.volume=50&rft.issue=6&rft.spage=517&rft.epage=533&rft.pages=517-533&rft.issn=1040-7790&rft.eissn=1521-0626&rft.coden=NHBFEE&rft_id=info:doi/10.1080/10407790600681351&rft_dat=%3Cproquest_cross%3E29227551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29227551&rft_id=info:pmid/&rfr_iscdi=true