A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2006-10, Vol.357 (1), p.19-30
Hauptverfasser: Schneider, E.A., Deinert, M.R., Cady, K.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 19
container_title Journal of nuclear materials
container_volume 357
creator Schneider, E.A.
Deinert, M.R.
Cady, K.B.
description The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.
doi_str_mv 10.1016/j.jnucmat.2006.04.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29226572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311506002169</els_id><sourcerecordid>20228508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-1b6e1f99e57d326b3d2ed0413085b844699b7a7d985775662ddfacd21fc98d1a3</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpodu0H6GgS3uzM5ItWzqVEPoPArm0Z6GVxq0WWXIkuTTfvgq70GNOA8PvvRneI-Q9g54Bm65P_SnudjW15wBTD2MPjL8gBybnoRslh5fkAMB5NzAmXpM3pZwAQCgQB_JwQ21at72a6lM0ITzS4tctIF2Tw0CXlKnDinn10cdftP5GWv2KbblhdBgrLRvamk2gEfeaU6RL2P9SH6mh7a2AJtOMxtbmZFPGt-TVYkLBd5d5RX5--fzj9lt3d__1--3NXWdHYLVjxwnZohSK2Q18Og6Oo4ORDSDFUY7jpNRxNrNTUsyzmCbu3GKs42yxSjpmhivy8ey75fSwY6l69cViCCZi2ovmivNJzPx5sEUnBcgGijNocyol46K37FeTHzUD_dSEPulLE_qpCQ2jbk003YfLAVOsCUs20fryXyyZFEKJxn06c9hi-eMx62I9RovO5xaxdsk_c-kf94qjQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20228508</pqid></control><display><type>article</type><title>A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Schneider, E.A. ; Deinert, M.R. ; Cady, K.B.</creator><creatorcontrib>Schneider, E.A. ; Deinert, M.R. ; Cady, K.B.</creatorcontrib><description>The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2006.04.012</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Installations for energy generation and conversion: thermal and electrical energy</subject><ispartof>Journal of nuclear materials, 2006-10, Vol.357 (1), p.19-30</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-1b6e1f99e57d326b3d2ed0413085b844699b7a7d985775662ddfacd21fc98d1a3</citedby><cites>FETCH-LOGICAL-c401t-1b6e1f99e57d326b3d2ed0413085b844699b7a7d985775662ddfacd21fc98d1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2006.04.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18185595$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneider, E.A.</creatorcontrib><creatorcontrib>Deinert, M.R.</creatorcontrib><creatorcontrib>Cady, K.B.</creatorcontrib><title>A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core</title><title>Journal of nuclear materials</title><description>The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVpodu0H6GgS3uzM5ItWzqVEPoPArm0Z6GVxq0WWXIkuTTfvgq70GNOA8PvvRneI-Q9g54Bm65P_SnudjW15wBTD2MPjL8gBybnoRslh5fkAMB5NzAmXpM3pZwAQCgQB_JwQ21at72a6lM0ITzS4tctIF2Tw0CXlKnDinn10cdftP5GWv2KbblhdBgrLRvamk2gEfeaU6RL2P9SH6mh7a2AJtOMxtbmZFPGt-TVYkLBd5d5RX5--fzj9lt3d__1--3NXWdHYLVjxwnZohSK2Q18Og6Oo4ORDSDFUY7jpNRxNrNTUsyzmCbu3GKs42yxSjpmhivy8ey75fSwY6l69cViCCZi2ovmivNJzPx5sEUnBcgGijNocyol46K37FeTHzUD_dSEPulLE_qpCQ2jbk003YfLAVOsCUs20fryXyyZFEKJxn06c9hi-eMx62I9RovO5xaxdsk_c-kf94qjQA</recordid><startdate>20061015</startdate><enddate>20061015</enddate><creator>Schneider, E.A.</creator><creator>Deinert, M.R.</creator><creator>Cady, K.B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20061015</creationdate><title>A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core</title><author>Schneider, E.A. ; Deinert, M.R. ; Cady, K.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-1b6e1f99e57d326b3d2ed0413085b844699b7a7d985775662ddfacd21fc98d1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, E.A.</creatorcontrib><creatorcontrib>Deinert, M.R.</creatorcontrib><creatorcontrib>Cady, K.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, E.A.</au><au>Deinert, M.R.</au><au>Cady, K.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core</atitle><jtitle>Journal of nuclear materials</jtitle><date>2006-10-15</date><risdate>2006</risdate><volume>357</volume><issue>1</issue><spage>19</spage><epage>30</epage><pages>19-30</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2006.04.012</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2006-10, Vol.357 (1), p.19-30
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_miscellaneous_29226572
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Installations for energy generation and conversion: thermal and electrical energy
title A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computationally%20simple%20model%20for%20determining%20the%20time%20dependent%20spectral%20neutron%20flux%20in%20a%20nuclear%20reactor%20core&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Schneider,%20E.A.&rft.date=2006-10-15&rft.volume=357&rft.issue=1&rft.spage=19&rft.epage=30&rft.pages=19-30&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2006.04.012&rft_dat=%3Cproquest_cross%3E20228508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20228508&rft_id=info:pmid/&rft_els_id=S0022311506002169&rfr_iscdi=true