The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films

MO x N y (M represents transition metal) thin films have shown excellent performance in various fields such as temperature sensing, high-k gate dielectrics and decorative coatings. Thin film properties can be significantly affected by adjusting oxygen contents, while the physical mechanism of oxygen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2022-10, Vol.57 (39), p.18456-18467
Hauptverfasser: You, Minmin, Li, Yanjie, Zhang, Haikuo, Lin, Zude, Li, Jinjin, Li, Xiuyan, Liu, Jingquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18467
container_issue 39
container_start_page 18456
container_title Journal of materials science
container_volume 57
creator You, Minmin
Li, Yanjie
Zhang, Haikuo
Lin, Zude
Li, Jinjin
Li, Xiuyan
Liu, Jingquan
description MO x N y (M represents transition metal) thin films have shown excellent performance in various fields such as temperature sensing, high-k gate dielectrics and decorative coatings. Thin film properties can be significantly affected by adjusting oxygen contents, while the physical mechanism of oxygen in MN x structure is not well explored. In this paper, the effects of oxygen doping in ZrN thin films (expressed as ZrO x N y ) on material modification and temperature sensing are discussed from a viewpoint of Zr vacancies (V Zr ). A phenomenon of phase transition from ZrN into Zr 3 N 4 structure is observed with increasing flow rates of N 2 /O 2 in thin film deposition. In addition, an electronic transition from metallic to semiconductor behavior is found even a slight oxygen is doped in ZrN structure. Based on the experimental results and first principal calculations, a physical model is proposed that V Zr can be induced in ZrN structure by oxygen doping. A small quantity of V Zr change the electronic behavior of the film from metallic to semiconductor type and a large quantity trigger phase transition from ZrN to Zr 3 N 4 structure. The results and model provide clear insights into engineering of ZrO x N y thin films for high performance temperature sensors. Graphical Abstract
doi_str_mv 10.1007/s10853-022-07182-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2922030830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723204013</galeid><sourcerecordid>A723204013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-1d60e062d143443ef478f053250010f68fb93ed22fc7237508fb8f97a2212e713</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodu0f6AnQS_tweloZFneYwj9CAQK-bjkIhR75FWwpa1kQ3Z_fZW6UNJD0UEw8zxiRi9j7wWcCgD9OQtolawAsQItWqyOL9hGKC2rugX5km3gqYV1I16zNzk_AIDSKDbs7mZHfKJuZ4PPE4-O73c2E5-TDdnPPgbuQ7901PP7A4-Ph4EC7-Peh6E0-NGnLga_TDz4Ofm-iLtSdn6c8lv2ytkx07s_9wm7_frl5vx7dfnj28X52WXVSd3MlegbIGiwF7Wsa0mu1q0DJVEBCHBN6-63knpE12mUWkEptG6rLaJA0kKesI_ru_sUfy6UZzP53NE42kBxyQa3iCChlVDQD_-gD3FJoUxnUKPSQjWqKdTpSg12JOODi-U3unJ6mnxZl8p6ZM7KNAg1CFmET8-Ewsz0OA92ydlcXF89Z3FluxRzTuTMPvnJpoMRYJ6yNGuWpgRmfmdpjkWSq5QLHAZKf-f-j_UL5veflA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725715656</pqid></control><display><type>article</type><title>The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films</title><source>SpringerLink Journals - AutoHoldings</source><creator>You, Minmin ; Li, Yanjie ; Zhang, Haikuo ; Lin, Zude ; Li, Jinjin ; Li, Xiuyan ; Liu, Jingquan</creator><creatorcontrib>You, Minmin ; Li, Yanjie ; Zhang, Haikuo ; Lin, Zude ; Li, Jinjin ; Li, Xiuyan ; Liu, Jingquan</creatorcontrib><description>MO x N y (M represents transition metal) thin films have shown excellent performance in various fields such as temperature sensing, high-k gate dielectrics and decorative coatings. Thin film properties can be significantly affected by adjusting oxygen contents, while the physical mechanism of oxygen in MN x structure is not well explored. In this paper, the effects of oxygen doping in ZrN thin films (expressed as ZrO x N y ) on material modification and temperature sensing are discussed from a viewpoint of Zr vacancies (V Zr ). A phenomenon of phase transition from ZrN into Zr 3 N 4 structure is observed with increasing flow rates of N 2 /O 2 in thin film deposition. In addition, an electronic transition from metallic to semiconductor behavior is found even a slight oxygen is doped in ZrN structure. Based on the experimental results and first principal calculations, a physical model is proposed that V Zr can be induced in ZrN structure by oxygen doping. A small quantity of V Zr change the electronic behavior of the film from metallic to semiconductor type and a large quantity trigger phase transition from ZrN to Zr 3 N 4 structure. The results and model provide clear insights into engineering of ZrO x N y thin films for high performance temperature sensors. Graphical Abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07182-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Dielectric films ; Dielectrics ; Doping ; Electronic Materials ; films (materials) ; Flow velocity ; Materials Science ; Nitrides ; Oxygen ; phase transition ; Phase transitions ; Polymer Sciences ; semiconductors ; Sensors ; Solid Mechanics ; temperature ; Temperature sensors ; Thin films ; Transition metals ; Zirconium ; Zirconium nitrides</subject><ispartof>Journal of materials science, 2022-10, Vol.57 (39), p.18456-18467</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-1d60e062d143443ef478f053250010f68fb93ed22fc7237508fb8f97a2212e713</cites><orcidid>0000-0003-4140-1516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07182-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07182-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>You, Minmin</creatorcontrib><creatorcontrib>Li, Yanjie</creatorcontrib><creatorcontrib>Zhang, Haikuo</creatorcontrib><creatorcontrib>Lin, Zude</creatorcontrib><creatorcontrib>Li, Jinjin</creatorcontrib><creatorcontrib>Li, Xiuyan</creatorcontrib><creatorcontrib>Liu, Jingquan</creatorcontrib><title>The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>MO x N y (M represents transition metal) thin films have shown excellent performance in various fields such as temperature sensing, high-k gate dielectrics and decorative coatings. Thin film properties can be significantly affected by adjusting oxygen contents, while the physical mechanism of oxygen in MN x structure is not well explored. In this paper, the effects of oxygen doping in ZrN thin films (expressed as ZrO x N y ) on material modification and temperature sensing are discussed from a viewpoint of Zr vacancies (V Zr ). A phenomenon of phase transition from ZrN into Zr 3 N 4 structure is observed with increasing flow rates of N 2 /O 2 in thin film deposition. In addition, an electronic transition from metallic to semiconductor behavior is found even a slight oxygen is doped in ZrN structure. Based on the experimental results and first principal calculations, a physical model is proposed that V Zr can be induced in ZrN structure by oxygen doping. A small quantity of V Zr change the electronic behavior of the film from metallic to semiconductor type and a large quantity trigger phase transition from ZrN to Zr 3 N 4 structure. The results and model provide clear insights into engineering of ZrO x N y thin films for high performance temperature sensors. Graphical Abstract</description><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Dielectric films</subject><subject>Dielectrics</subject><subject>Doping</subject><subject>Electronic Materials</subject><subject>films (materials)</subject><subject>Flow velocity</subject><subject>Materials Science</subject><subject>Nitrides</subject><subject>Oxygen</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Polymer Sciences</subject><subject>semiconductors</subject><subject>Sensors</subject><subject>Solid Mechanics</subject><subject>temperature</subject><subject>Temperature sensors</subject><subject>Thin films</subject><subject>Transition metals</subject><subject>Zirconium</subject><subject>Zirconium nitrides</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1r3DAQhkVpodu0f6AnQS_tweloZFneYwj9CAQK-bjkIhR75FWwpa1kQ3Z_fZW6UNJD0UEw8zxiRi9j7wWcCgD9OQtolawAsQItWqyOL9hGKC2rugX5km3gqYV1I16zNzk_AIDSKDbs7mZHfKJuZ4PPE4-O73c2E5-TDdnPPgbuQ7901PP7A4-Ph4EC7-Peh6E0-NGnLga_TDz4Ofm-iLtSdn6c8lv2ytkx07s_9wm7_frl5vx7dfnj28X52WXVSd3MlegbIGiwF7Wsa0mu1q0DJVEBCHBN6-63knpE12mUWkEptG6rLaJA0kKesI_ru_sUfy6UZzP53NE42kBxyQa3iCChlVDQD_-gD3FJoUxnUKPSQjWqKdTpSg12JOODi-U3unJ6mnxZl8p6ZM7KNAg1CFmET8-Ewsz0OA92ydlcXF89Z3FluxRzTuTMPvnJpoMRYJ6yNGuWpgRmfmdpjkWSq5QLHAZKf-f-j_UL5veflA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>You, Minmin</creator><creator>Li, Yanjie</creator><creator>Zhang, Haikuo</creator><creator>Lin, Zude</creator><creator>Li, Jinjin</creator><creator>Li, Xiuyan</creator><creator>Liu, Jingquan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4140-1516</orcidid></search><sort><creationdate>20221001</creationdate><title>The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films</title><author>You, Minmin ; Li, Yanjie ; Zhang, Haikuo ; Lin, Zude ; Li, Jinjin ; Li, Xiuyan ; Liu, Jingquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-1d60e062d143443ef478f053250010f68fb93ed22fc7237508fb8f97a2212e713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Dielectric films</topic><topic>Dielectrics</topic><topic>Doping</topic><topic>Electronic Materials</topic><topic>films (materials)</topic><topic>Flow velocity</topic><topic>Materials Science</topic><topic>Nitrides</topic><topic>Oxygen</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Polymer Sciences</topic><topic>semiconductors</topic><topic>Sensors</topic><topic>Solid Mechanics</topic><topic>temperature</topic><topic>Temperature sensors</topic><topic>Thin films</topic><topic>Transition metals</topic><topic>Zirconium</topic><topic>Zirconium nitrides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Minmin</creatorcontrib><creatorcontrib>Li, Yanjie</creatorcontrib><creatorcontrib>Zhang, Haikuo</creatorcontrib><creatorcontrib>Lin, Zude</creatorcontrib><creatorcontrib>Li, Jinjin</creatorcontrib><creatorcontrib>Li, Xiuyan</creatorcontrib><creatorcontrib>Liu, Jingquan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Minmin</au><au>Li, Yanjie</au><au>Zhang, Haikuo</au><au>Lin, Zude</au><au>Li, Jinjin</au><au>Li, Xiuyan</au><au>Liu, Jingquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>57</volume><issue>39</issue><spage>18456</spage><epage>18467</epage><pages>18456-18467</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>MO x N y (M represents transition metal) thin films have shown excellent performance in various fields such as temperature sensing, high-k gate dielectrics and decorative coatings. Thin film properties can be significantly affected by adjusting oxygen contents, while the physical mechanism of oxygen in MN x structure is not well explored. In this paper, the effects of oxygen doping in ZrN thin films (expressed as ZrO x N y ) on material modification and temperature sensing are discussed from a viewpoint of Zr vacancies (V Zr ). A phenomenon of phase transition from ZrN into Zr 3 N 4 structure is observed with increasing flow rates of N 2 /O 2 in thin film deposition. In addition, an electronic transition from metallic to semiconductor behavior is found even a slight oxygen is doped in ZrN structure. Based on the experimental results and first principal calculations, a physical model is proposed that V Zr can be induced in ZrN structure by oxygen doping. A small quantity of V Zr change the electronic behavior of the film from metallic to semiconductor type and a large quantity trigger phase transition from ZrN to Zr 3 N 4 structure. The results and model provide clear insights into engineering of ZrO x N y thin films for high performance temperature sensors. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07182-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4140-1516</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2022-10, Vol.57 (39), p.18456-18467
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_2922030830
source SpringerLink Journals - AutoHoldings
subjects Analysis
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Dielectric films
Dielectrics
Doping
Electronic Materials
films (materials)
Flow velocity
Materials Science
Nitrides
Oxygen
phase transition
Phase transitions
Polymer Sciences
semiconductors
Sensors
Solid Mechanics
temperature
Temperature sensors
Thin films
Transition metals
Zirconium
Zirconium nitrides
title The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanism%20of%20phase%20transition%20induced%20by%20oxygen%20doping%20in%20zirconium%20nitride%20thin%20films&rft.jtitle=Journal%20of%20materials%20science&rft.au=You,%20Minmin&rft.date=2022-10-01&rft.volume=57&rft.issue=39&rft.spage=18456&rft.epage=18467&rft.pages=18456-18467&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07182-z&rft_dat=%3Cgale_proqu%3EA723204013%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725715656&rft_id=info:pmid/&rft_galeid=A723204013&rfr_iscdi=true