The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films
MO x N y (M represents transition metal) thin films have shown excellent performance in various fields such as temperature sensing, high-k gate dielectrics and decorative coatings. Thin film properties can be significantly affected by adjusting oxygen contents, while the physical mechanism of oxygen...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2022-10, Vol.57 (39), p.18456-18467 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18467 |
---|---|
container_issue | 39 |
container_start_page | 18456 |
container_title | Journal of materials science |
container_volume | 57 |
creator | You, Minmin Li, Yanjie Zhang, Haikuo Lin, Zude Li, Jinjin Li, Xiuyan Liu, Jingquan |
description | MO
x
N
y
(M represents transition metal) thin films have shown excellent performance in various fields such as temperature sensing, high-k gate dielectrics and decorative coatings. Thin film properties can be significantly affected by adjusting oxygen contents, while the physical mechanism of oxygen in MN
x
structure is not well explored. In this paper, the effects of oxygen doping in ZrN thin films (expressed as ZrO
x
N
y
) on material modification and temperature sensing are discussed from a viewpoint of Zr vacancies (V
Zr
). A phenomenon of phase transition from ZrN into Zr
3
N
4
structure is observed with increasing flow rates of N
2
/O
2
in thin film deposition. In addition, an electronic transition from metallic to semiconductor behavior is found even a slight oxygen is doped in ZrN structure. Based on the experimental results and first principal calculations, a physical model is proposed that V
Zr
can be induced in ZrN structure by oxygen doping. A small quantity of V
Zr
change the electronic behavior of the film from metallic to semiconductor type and a large quantity trigger phase transition from ZrN to Zr
3
N
4
structure. The results and model provide clear insights into engineering of ZrO
x
N
y
thin films for high performance temperature sensors.
Graphical Abstract |
doi_str_mv | 10.1007/s10853-022-07182-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2922030830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723204013</galeid><sourcerecordid>A723204013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-1d60e062d143443ef478f053250010f68fb93ed22fc7237508fb8f97a2212e713</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodu0f6AnQS_tweloZFneYwj9CAQK-bjkIhR75FWwpa1kQ3Z_fZW6UNJD0UEw8zxiRi9j7wWcCgD9OQtolawAsQItWqyOL9hGKC2rugX5km3gqYV1I16zNzk_AIDSKDbs7mZHfKJuZ4PPE4-O73c2E5-TDdnPPgbuQ7901PP7A4-Ph4EC7-Peh6E0-NGnLga_TDz4Ofm-iLtSdn6c8lv2ytkx07s_9wm7_frl5vx7dfnj28X52WXVSd3MlegbIGiwF7Wsa0mu1q0DJVEBCHBN6-63knpE12mUWkEptG6rLaJA0kKesI_ru_sUfy6UZzP53NE42kBxyQa3iCChlVDQD_-gD3FJoUxnUKPSQjWqKdTpSg12JOODi-U3unJ6mnxZl8p6ZM7KNAg1CFmET8-Ewsz0OA92ydlcXF89Z3FluxRzTuTMPvnJpoMRYJ6yNGuWpgRmfmdpjkWSq5QLHAZKf-f-j_UL5veflA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725715656</pqid></control><display><type>article</type><title>The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films</title><source>SpringerLink Journals - AutoHoldings</source><creator>You, Minmin ; Li, Yanjie ; Zhang, Haikuo ; Lin, Zude ; Li, Jinjin ; Li, Xiuyan ; Liu, Jingquan</creator><creatorcontrib>You, Minmin ; Li, Yanjie ; Zhang, Haikuo ; Lin, Zude ; Li, Jinjin ; Li, Xiuyan ; Liu, Jingquan</creatorcontrib><description>MO
x
N
y
(M represents transition metal) thin films have shown excellent performance in various fields such as temperature sensing, high-k gate dielectrics and decorative coatings. Thin film properties can be significantly affected by adjusting oxygen contents, while the physical mechanism of oxygen in MN
x
structure is not well explored. In this paper, the effects of oxygen doping in ZrN thin films (expressed as ZrO
x
N
y
) on material modification and temperature sensing are discussed from a viewpoint of Zr vacancies (V
Zr
). A phenomenon of phase transition from ZrN into Zr
3
N
4
structure is observed with increasing flow rates of N
2
/O
2
in thin film deposition. In addition, an electronic transition from metallic to semiconductor behavior is found even a slight oxygen is doped in ZrN structure. Based on the experimental results and first principal calculations, a physical model is proposed that V
Zr
can be induced in ZrN structure by oxygen doping. A small quantity of V
Zr
change the electronic behavior of the film from metallic to semiconductor type and a large quantity trigger phase transition from ZrN to Zr
3
N
4
structure. The results and model provide clear insights into engineering of ZrO
x
N
y
thin films for high performance temperature sensors.
Graphical Abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07182-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Dielectric films ; Dielectrics ; Doping ; Electronic Materials ; films (materials) ; Flow velocity ; Materials Science ; Nitrides ; Oxygen ; phase transition ; Phase transitions ; Polymer Sciences ; semiconductors ; Sensors ; Solid Mechanics ; temperature ; Temperature sensors ; Thin films ; Transition metals ; Zirconium ; Zirconium nitrides</subject><ispartof>Journal of materials science, 2022-10, Vol.57 (39), p.18456-18467</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-1d60e062d143443ef478f053250010f68fb93ed22fc7237508fb8f97a2212e713</cites><orcidid>0000-0003-4140-1516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07182-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07182-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>You, Minmin</creatorcontrib><creatorcontrib>Li, Yanjie</creatorcontrib><creatorcontrib>Zhang, Haikuo</creatorcontrib><creatorcontrib>Lin, Zude</creatorcontrib><creatorcontrib>Li, Jinjin</creatorcontrib><creatorcontrib>Li, Xiuyan</creatorcontrib><creatorcontrib>Liu, Jingquan</creatorcontrib><title>The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>MO
x
N
y
(M represents transition metal) thin films have shown excellent performance in various fields such as temperature sensing, high-k gate dielectrics and decorative coatings. Thin film properties can be significantly affected by adjusting oxygen contents, while the physical mechanism of oxygen in MN
x
structure is not well explored. In this paper, the effects of oxygen doping in ZrN thin films (expressed as ZrO
x
N
y
) on material modification and temperature sensing are discussed from a viewpoint of Zr vacancies (V
Zr
). A phenomenon of phase transition from ZrN into Zr
3
N
4
structure is observed with increasing flow rates of N
2
/O
2
in thin film deposition. In addition, an electronic transition from metallic to semiconductor behavior is found even a slight oxygen is doped in ZrN structure. Based on the experimental results and first principal calculations, a physical model is proposed that V
Zr
can be induced in ZrN structure by oxygen doping. A small quantity of V
Zr
change the electronic behavior of the film from metallic to semiconductor type and a large quantity trigger phase transition from ZrN to Zr
3
N
4
structure. The results and model provide clear insights into engineering of ZrO
x
N
y
thin films for high performance temperature sensors.
Graphical Abstract</description><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Dielectric films</subject><subject>Dielectrics</subject><subject>Doping</subject><subject>Electronic Materials</subject><subject>films (materials)</subject><subject>Flow velocity</subject><subject>Materials Science</subject><subject>Nitrides</subject><subject>Oxygen</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Polymer Sciences</subject><subject>semiconductors</subject><subject>Sensors</subject><subject>Solid Mechanics</subject><subject>temperature</subject><subject>Temperature sensors</subject><subject>Thin films</subject><subject>Transition metals</subject><subject>Zirconium</subject><subject>Zirconium nitrides</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1r3DAQhkVpodu0f6AnQS_tweloZFneYwj9CAQK-bjkIhR75FWwpa1kQ3Z_fZW6UNJD0UEw8zxiRi9j7wWcCgD9OQtolawAsQItWqyOL9hGKC2rugX5km3gqYV1I16zNzk_AIDSKDbs7mZHfKJuZ4PPE4-O73c2E5-TDdnPPgbuQ7901PP7A4-Ph4EC7-Peh6E0-NGnLga_TDz4Ofm-iLtSdn6c8lv2ytkx07s_9wm7_frl5vx7dfnj28X52WXVSd3MlegbIGiwF7Wsa0mu1q0DJVEBCHBN6-63knpE12mUWkEptG6rLaJA0kKesI_ru_sUfy6UZzP53NE42kBxyQa3iCChlVDQD_-gD3FJoUxnUKPSQjWqKdTpSg12JOODi-U3unJ6mnxZl8p6ZM7KNAg1CFmET8-Ewsz0OA92ydlcXF89Z3FluxRzTuTMPvnJpoMRYJ6yNGuWpgRmfmdpjkWSq5QLHAZKf-f-j_UL5veflA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>You, Minmin</creator><creator>Li, Yanjie</creator><creator>Zhang, Haikuo</creator><creator>Lin, Zude</creator><creator>Li, Jinjin</creator><creator>Li, Xiuyan</creator><creator>Liu, Jingquan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4140-1516</orcidid></search><sort><creationdate>20221001</creationdate><title>The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films</title><author>You, Minmin ; Li, Yanjie ; Zhang, Haikuo ; Lin, Zude ; Li, Jinjin ; Li, Xiuyan ; Liu, Jingquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-1d60e062d143443ef478f053250010f68fb93ed22fc7237508fb8f97a2212e713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Dielectric films</topic><topic>Dielectrics</topic><topic>Doping</topic><topic>Electronic Materials</topic><topic>films (materials)</topic><topic>Flow velocity</topic><topic>Materials Science</topic><topic>Nitrides</topic><topic>Oxygen</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Polymer Sciences</topic><topic>semiconductors</topic><topic>Sensors</topic><topic>Solid Mechanics</topic><topic>temperature</topic><topic>Temperature sensors</topic><topic>Thin films</topic><topic>Transition metals</topic><topic>Zirconium</topic><topic>Zirconium nitrides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Minmin</creatorcontrib><creatorcontrib>Li, Yanjie</creatorcontrib><creatorcontrib>Zhang, Haikuo</creatorcontrib><creatorcontrib>Lin, Zude</creatorcontrib><creatorcontrib>Li, Jinjin</creatorcontrib><creatorcontrib>Li, Xiuyan</creatorcontrib><creatorcontrib>Liu, Jingquan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Minmin</au><au>Li, Yanjie</au><au>Zhang, Haikuo</au><au>Lin, Zude</au><au>Li, Jinjin</au><au>Li, Xiuyan</au><au>Liu, Jingquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>57</volume><issue>39</issue><spage>18456</spage><epage>18467</epage><pages>18456-18467</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>MO
x
N
y
(M represents transition metal) thin films have shown excellent performance in various fields such as temperature sensing, high-k gate dielectrics and decorative coatings. Thin film properties can be significantly affected by adjusting oxygen contents, while the physical mechanism of oxygen in MN
x
structure is not well explored. In this paper, the effects of oxygen doping in ZrN thin films (expressed as ZrO
x
N
y
) on material modification and temperature sensing are discussed from a viewpoint of Zr vacancies (V
Zr
). A phenomenon of phase transition from ZrN into Zr
3
N
4
structure is observed with increasing flow rates of N
2
/O
2
in thin film deposition. In addition, an electronic transition from metallic to semiconductor behavior is found even a slight oxygen is doped in ZrN structure. Based on the experimental results and first principal calculations, a physical model is proposed that V
Zr
can be induced in ZrN structure by oxygen doping. A small quantity of V
Zr
change the electronic behavior of the film from metallic to semiconductor type and a large quantity trigger phase transition from ZrN to Zr
3
N
4
structure. The results and model provide clear insights into engineering of ZrO
x
N
y
thin films for high performance temperature sensors.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07182-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4140-1516</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2022-10, Vol.57 (39), p.18456-18467 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_2922030830 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Dielectric films Dielectrics Doping Electronic Materials films (materials) Flow velocity Materials Science Nitrides Oxygen phase transition Phase transitions Polymer Sciences semiconductors Sensors Solid Mechanics temperature Temperature sensors Thin films Transition metals Zirconium Zirconium nitrides |
title | The mechanism of phase transition induced by oxygen doping in zirconium nitride thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanism%20of%20phase%20transition%20induced%20by%20oxygen%20doping%20in%20zirconium%20nitride%20thin%20films&rft.jtitle=Journal%20of%20materials%20science&rft.au=You,%20Minmin&rft.date=2022-10-01&rft.volume=57&rft.issue=39&rft.spage=18456&rft.epage=18467&rft.pages=18456-18467&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07182-z&rft_dat=%3Cgale_proqu%3EA723204013%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725715656&rft_id=info:pmid/&rft_galeid=A723204013&rfr_iscdi=true |