Dynamic PACVD coating of strip metal with silicon oxide, titanium oxide and amorphous carbon films

With the Strip Hollow Cathode (SHC) process a new plasma-assisted chemical vapor deposition (PACVD) process was introduced, which was shown to meet the requirements of dynamic steel strip coating with plasma polymer films from several monomers, utilizing the hollow cathode effect. The operating pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2005-10, Vol.200 (1-4), p.976-979
Hauptverfasser: Ortner, K., Jung, T., Klages, C.-P., Linder, B., Strauss, B., Sämann, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 979
container_issue 1-4
container_start_page 976
container_title Surface & coatings technology
container_volume 200
creator Ortner, K.
Jung, T.
Klages, C.-P.
Linder, B.
Strauss, B.
Sämann, N.
description With the Strip Hollow Cathode (SHC) process a new plasma-assisted chemical vapor deposition (PACVD) process was introduced, which was shown to meet the requirements of dynamic steel strip coating with plasma polymer films from several monomers, utilizing the hollow cathode effect. The operating pressure is in the upper fine vacuum range; the SHC process therefore does not require an extensive vacuum environment. Now, this process has been applied to the deposition of silicon oxide, titanium oxide and amorphous carbon films. The films were deposited onto steel and other conducting sheet substrates, even on coil coated steel strip with a polymer film thickness of at least 50 μm. All films show a dense, pinhole-free structure and are highly uniform in film thickness. The hardness of amorphous carbon and silicon oxide polymer films exhibited values of 19 and 3 GPa, respectively, which is well suited for many scratch protection applications. Additionally, measurements of dielectric breakdown strength yield values higher than 10 MV/cm for both 300 nm and 600 nm thick silicon oxide films. Ellipsometric measurements yield a refraction index of 1.47 (550 nm) in the case of silicon oxide. Color and tribological properties such as hardness, Young's modulus, and scratch resistivity have been evaluated.
doi_str_mv 10.1016/j.surfcoat.2005.01.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29220229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897205000745</els_id><sourcerecordid>28507144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-a6cfe1b6ee3f7482d81dee14e6d55309d1deb804df98b820d422f5ffc94378233</originalsourceid><addsrcrecordid>eNqFkFFrFDEUhYMouFb_guSlPjnbm0xmknmzbLUtFPTB9jVkkps2y8xkTbLV_nuzbMXHwoHLge_eczmEfGSwZsD6s-0675O30ZQ1B-jWwKrkK7JiSg5N2wr5mqyAd7JRg-RvybuctwAVGcSKjBdPi5mDpT_ON3cX9HAlLPc0eppLCjs6YzET_R3KA81hCjYuNP4JDj_TEopZwn4-emoWR80c0-4h7jO1Jo0V9WGa83vyxpsp44fneUJuv339ublqbr5fXm_ObxorQJTG9NYjG3vE1kuhuFPMITKBveu6FgZX7ahAOD-oUXFwgnPfeW8H0UrF2_aEfDre3aX4a4-56Dlki9NkFqw_aT5wDpwPL4OqA8mEqGB_BG2KOSf0epfCbNKTZqAP3eut_te9PnSvgVXJunj6nGCyNZNPZrEh_9-WQiiQULkvRw5rL48Bk8424GLRhYS2aBfDS1F_AYbfnpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28507144</pqid></control><display><type>article</type><title>Dynamic PACVD coating of strip metal with silicon oxide, titanium oxide and amorphous carbon films</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ortner, K. ; Jung, T. ; Klages, C.-P. ; Linder, B. ; Strauss, B. ; Sämann, N.</creator><creatorcontrib>Ortner, K. ; Jung, T. ; Klages, C.-P. ; Linder, B. ; Strauss, B. ; Sämann, N.</creatorcontrib><description>With the Strip Hollow Cathode (SHC) process a new plasma-assisted chemical vapor deposition (PACVD) process was introduced, which was shown to meet the requirements of dynamic steel strip coating with plasma polymer films from several monomers, utilizing the hollow cathode effect. The operating pressure is in the upper fine vacuum range; the SHC process therefore does not require an extensive vacuum environment. Now, this process has been applied to the deposition of silicon oxide, titanium oxide and amorphous carbon films. The films were deposited onto steel and other conducting sheet substrates, even on coil coated steel strip with a polymer film thickness of at least 50 μm. All films show a dense, pinhole-free structure and are highly uniform in film thickness. The hardness of amorphous carbon and silicon oxide polymer films exhibited values of 19 and 3 GPa, respectively, which is well suited for many scratch protection applications. Additionally, measurements of dielectric breakdown strength yield values higher than 10 MV/cm for both 300 nm and 600 nm thick silicon oxide films. Ellipsometric measurements yield a refraction index of 1.47 (550 nm) in the case of silicon oxide. Color and tribological properties such as hardness, Young's modulus, and scratch resistivity have been evaluated.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2005.01.017</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; High rate deposition ; Hollow cathode glow discharge ; Materials science ; Metallic coatings ; Metals. Metallurgy ; Optical properties ; Other topics in materials science ; PACVD ; Physics ; Production techniques ; Strip metal coating ; Surface treatment ; Tribological properties</subject><ispartof>Surface &amp; coatings technology, 2005-10, Vol.200 (1-4), p.976-979</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-a6cfe1b6ee3f7482d81dee14e6d55309d1deb804df98b820d422f5ffc94378233</citedby><cites>FETCH-LOGICAL-c404t-a6cfe1b6ee3f7482d81dee14e6d55309d1deb804df98b820d422f5ffc94378233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2005.01.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17448070$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortner, K.</creatorcontrib><creatorcontrib>Jung, T.</creatorcontrib><creatorcontrib>Klages, C.-P.</creatorcontrib><creatorcontrib>Linder, B.</creatorcontrib><creatorcontrib>Strauss, B.</creatorcontrib><creatorcontrib>Sämann, N.</creatorcontrib><title>Dynamic PACVD coating of strip metal with silicon oxide, titanium oxide and amorphous carbon films</title><title>Surface &amp; coatings technology</title><description>With the Strip Hollow Cathode (SHC) process a new plasma-assisted chemical vapor deposition (PACVD) process was introduced, which was shown to meet the requirements of dynamic steel strip coating with plasma polymer films from several monomers, utilizing the hollow cathode effect. The operating pressure is in the upper fine vacuum range; the SHC process therefore does not require an extensive vacuum environment. Now, this process has been applied to the deposition of silicon oxide, titanium oxide and amorphous carbon films. The films were deposited onto steel and other conducting sheet substrates, even on coil coated steel strip with a polymer film thickness of at least 50 μm. All films show a dense, pinhole-free structure and are highly uniform in film thickness. The hardness of amorphous carbon and silicon oxide polymer films exhibited values of 19 and 3 GPa, respectively, which is well suited for many scratch protection applications. Additionally, measurements of dielectric breakdown strength yield values higher than 10 MV/cm for both 300 nm and 600 nm thick silicon oxide films. Ellipsometric measurements yield a refraction index of 1.47 (550 nm) in the case of silicon oxide. Color and tribological properties such as hardness, Young's modulus, and scratch resistivity have been evaluated.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>High rate deposition</subject><subject>Hollow cathode glow discharge</subject><subject>Materials science</subject><subject>Metallic coatings</subject><subject>Metals. Metallurgy</subject><subject>Optical properties</subject><subject>Other topics in materials science</subject><subject>PACVD</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Strip metal coating</subject><subject>Surface treatment</subject><subject>Tribological properties</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkFFrFDEUhYMouFb_guSlPjnbm0xmknmzbLUtFPTB9jVkkps2y8xkTbLV_nuzbMXHwoHLge_eczmEfGSwZsD6s-0675O30ZQ1B-jWwKrkK7JiSg5N2wr5mqyAd7JRg-RvybuctwAVGcSKjBdPi5mDpT_ON3cX9HAlLPc0eppLCjs6YzET_R3KA81hCjYuNP4JDj_TEopZwn4-emoWR80c0-4h7jO1Jo0V9WGa83vyxpsp44fneUJuv339ublqbr5fXm_ObxorQJTG9NYjG3vE1kuhuFPMITKBveu6FgZX7ahAOD-oUXFwgnPfeW8H0UrF2_aEfDre3aX4a4-56Dlki9NkFqw_aT5wDpwPL4OqA8mEqGB_BG2KOSf0epfCbNKTZqAP3eut_te9PnSvgVXJunj6nGCyNZNPZrEh_9-WQiiQULkvRw5rL48Bk8424GLRhYS2aBfDS1F_AYbfnpo</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Ortner, K.</creator><creator>Jung, T.</creator><creator>Klages, C.-P.</creator><creator>Linder, B.</creator><creator>Strauss, B.</creator><creator>Sämann, N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20051001</creationdate><title>Dynamic PACVD coating of strip metal with silicon oxide, titanium oxide and amorphous carbon films</title><author>Ortner, K. ; Jung, T. ; Klages, C.-P. ; Linder, B. ; Strauss, B. ; Sämann, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-a6cfe1b6ee3f7482d81dee14e6d55309d1deb804df98b820d422f5ffc94378233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>High rate deposition</topic><topic>Hollow cathode glow discharge</topic><topic>Materials science</topic><topic>Metallic coatings</topic><topic>Metals. Metallurgy</topic><topic>Optical properties</topic><topic>Other topics in materials science</topic><topic>PACVD</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Strip metal coating</topic><topic>Surface treatment</topic><topic>Tribological properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortner, K.</creatorcontrib><creatorcontrib>Jung, T.</creatorcontrib><creatorcontrib>Klages, C.-P.</creatorcontrib><creatorcontrib>Linder, B.</creatorcontrib><creatorcontrib>Strauss, B.</creatorcontrib><creatorcontrib>Sämann, N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortner, K.</au><au>Jung, T.</au><au>Klages, C.-P.</au><au>Linder, B.</au><au>Strauss, B.</au><au>Sämann, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic PACVD coating of strip metal with silicon oxide, titanium oxide and amorphous carbon films</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>200</volume><issue>1-4</issue><spage>976</spage><epage>979</epage><pages>976-979</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>With the Strip Hollow Cathode (SHC) process a new plasma-assisted chemical vapor deposition (PACVD) process was introduced, which was shown to meet the requirements of dynamic steel strip coating with plasma polymer films from several monomers, utilizing the hollow cathode effect. The operating pressure is in the upper fine vacuum range; the SHC process therefore does not require an extensive vacuum environment. Now, this process has been applied to the deposition of silicon oxide, titanium oxide and amorphous carbon films. The films were deposited onto steel and other conducting sheet substrates, even on coil coated steel strip with a polymer film thickness of at least 50 μm. All films show a dense, pinhole-free structure and are highly uniform in film thickness. The hardness of amorphous carbon and silicon oxide polymer films exhibited values of 19 and 3 GPa, respectively, which is well suited for many scratch protection applications. Additionally, measurements of dielectric breakdown strength yield values higher than 10 MV/cm for both 300 nm and 600 nm thick silicon oxide films. Ellipsometric measurements yield a refraction index of 1.47 (550 nm) in the case of silicon oxide. Color and tribological properties such as hardness, Young's modulus, and scratch resistivity have been evaluated.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2005.01.017</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2005-10, Vol.200 (1-4), p.976-979
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_29220229
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
High rate deposition
Hollow cathode glow discharge
Materials science
Metallic coatings
Metals. Metallurgy
Optical properties
Other topics in materials science
PACVD
Physics
Production techniques
Strip metal coating
Surface treatment
Tribological properties
title Dynamic PACVD coating of strip metal with silicon oxide, titanium oxide and amorphous carbon films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20PACVD%20coating%20of%20strip%20metal%20with%20silicon%20oxide,%20titanium%20oxide%20and%20amorphous%20carbon%20films&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Ortner,%20K.&rft.date=2005-10-01&rft.volume=200&rft.issue=1-4&rft.spage=976&rft.epage=979&rft.pages=976-979&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2005.01.017&rft_dat=%3Cproquest_cross%3E28507144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28507144&rft_id=info:pmid/&rft_els_id=S0257897205000745&rfr_iscdi=true