Database mining: a performance perspective
The authors' perspective of database mining as the confluence of machine learning techniques and the performance emphasis of database technology is presented. Three classes of database mining problems involving classification, associations, and sequences are described. It is argued that these p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 1993-12, Vol.5 (6), p.914-925 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors' perspective of database mining as the confluence of machine learning techniques and the performance emphasis of database technology is presented. Three classes of database mining problems involving classification, associations, and sequences are described. It is argued that these problems can be uniformly viewed as requiring discovery of rules embedded in massive amounts of data. A model and some basic operations for the process of rule discovery are described. It is shown how the database mining problems considered map to this model, and how they can be solved by using the basic operations proposed. An example is given of an algorithm for classification obtained by combining the basic rule discovery operations. This algorithm is efficient in discovering classification rules and has accuracy comparable to ID3, one of the best current classifiers.< > |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/69.250074 |