Determining the number of real roots of polynomials through neural networks
The ability of feedforward neural networks to identify the number of real roots of univariate polynomials is investigated. Furthermore, their ability to determine whether a system of multivariate polynomial equations has real solutions is examined on a problem of determining the structure of a molec...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2006-02, Vol.51 (3), p.527-536 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 536 |
---|---|
container_issue | 3 |
container_start_page | 527 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 51 |
creator | Mourrain, B. Pavlidis, N.G. Tasoulis, D.K. Vrahatis, M.N. |
description | The ability of feedforward neural networks to identify the number of real roots of univariate polynomials is investigated. Furthermore, their ability to determine whether a system of multivariate polynomial equations has real solutions is examined on a problem of determining the structure of a molecule. The obtained experimental results indicate that neural networks are capable of performing this task with high accuracy even when the training set is very small compared to the test set. |
doi_str_mv | 10.1016/j.camwa.2005.07.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29213407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122105005195</els_id><sourcerecordid>29213407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-9667ff7e1f808aa40aa1739bd9fa7974736562377b4357d456e5042aefb5f1233</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgUQp_AKWTIgl4fyROB4YUPkUSCwwW256Li5JXOyEin-PS5kRk3Xy895wLyGnFAoKtLpYFY3pNqZgAGUBsgDK9siE1pLnsqrqfTKBWtU5ZYwekqMYVwAgOIMJebzGAUPnetcvs-ENs37s5hgyb7OAps2C90PcTmvffvW-c6aNyQU_Lt-yHseQTI_Dxof3eEwObPrGk993Sl5vb15m9_nT893D7OopbwTAkKuqktZKpLaG2hgBxlDJ1XyhrJFKCsmrsmJcyrngpVyIssISBDNo56WljPMpOdvtXQf_MWIcdOdig21revRj1EwxygXIBM__hBRqRhWViv-P1kKpMlG-o03wMQa0eh1cZ8JXQnpbh17pnzr0tg4NUqc6Uupyl8J0mU-HQcfGYd_gwgVsBr3w7s_8N5hBk2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082184995</pqid></control><display><type>article</type><title>Determining the number of real roots of polynomials through neural networks</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mourrain, B. ; Pavlidis, N.G. ; Tasoulis, D.K. ; Vrahatis, M.N.</creator><creatorcontrib>Mourrain, B. ; Pavlidis, N.G. ; Tasoulis, D.K. ; Vrahatis, M.N.</creatorcontrib><description>The ability of feedforward neural networks to identify the number of real roots of univariate polynomials is investigated. Furthermore, their ability to determine whether a system of multivariate polynomial equations has real solutions is examined on a problem of determining the structure of a molecule. The obtained experimental results indicate that neural networks are capable of performing this task with high accuracy even when the training set is very small compared to the test set.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2005.07.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accuracy ; Feedforward ; Mathematical analysis ; Mathematical models ; Neural networks ; Number of zeros ; Roots ; Roots of polynomials ; Tasks ; Training</subject><ispartof>Computers & mathematics with applications (1987), 2006-02, Vol.51 (3), p.527-536</ispartof><rights>2006 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-9667ff7e1f808aa40aa1739bd9fa7974736562377b4357d456e5042aefb5f1233</citedby><cites>FETCH-LOGICAL-c400t-9667ff7e1f808aa40aa1739bd9fa7974736562377b4357d456e5042aefb5f1233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2005.07.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mourrain, B.</creatorcontrib><creatorcontrib>Pavlidis, N.G.</creatorcontrib><creatorcontrib>Tasoulis, D.K.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><title>Determining the number of real roots of polynomials through neural networks</title><title>Computers & mathematics with applications (1987)</title><description>The ability of feedforward neural networks to identify the number of real roots of univariate polynomials is investigated. Furthermore, their ability to determine whether a system of multivariate polynomial equations has real solutions is examined on a problem of determining the structure of a molecule. The obtained experimental results indicate that neural networks are capable of performing this task with high accuracy even when the training set is very small compared to the test set.</description><subject>Accuracy</subject><subject>Feedforward</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Number of zeros</subject><subject>Roots</subject><subject>Roots of polynomials</subject><subject>Tasks</subject><subject>Training</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqN0T1PwzAQBmALgUQp_AKWTIgl4fyROB4YUPkUSCwwW256Li5JXOyEin-PS5kRk3Xy895wLyGnFAoKtLpYFY3pNqZgAGUBsgDK9siE1pLnsqrqfTKBWtU5ZYwekqMYVwAgOIMJebzGAUPnetcvs-ENs37s5hgyb7OAps2C90PcTmvffvW-c6aNyQU_Lt-yHseQTI_Dxof3eEwObPrGk993Sl5vb15m9_nT893D7OopbwTAkKuqktZKpLaG2hgBxlDJ1XyhrJFKCsmrsmJcyrngpVyIssISBDNo56WljPMpOdvtXQf_MWIcdOdig21revRj1EwxygXIBM__hBRqRhWViv-P1kKpMlG-o03wMQa0eh1cZ8JXQnpbh17pnzr0tg4NUqc6Uupyl8J0mU-HQcfGYd_gwgVsBr3w7s_8N5hBk2M</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Mourrain, B.</creator><creator>Pavlidis, N.G.</creator><creator>Tasoulis, D.K.</creator><creator>Vrahatis, M.N.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060201</creationdate><title>Determining the number of real roots of polynomials through neural networks</title><author>Mourrain, B. ; Pavlidis, N.G. ; Tasoulis, D.K. ; Vrahatis, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-9667ff7e1f808aa40aa1739bd9fa7974736562377b4357d456e5042aefb5f1233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accuracy</topic><topic>Feedforward</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Number of zeros</topic><topic>Roots</topic><topic>Roots of polynomials</topic><topic>Tasks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mourrain, B.</creatorcontrib><creatorcontrib>Pavlidis, N.G.</creatorcontrib><creatorcontrib>Tasoulis, D.K.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mourrain, B.</au><au>Pavlidis, N.G.</au><au>Tasoulis, D.K.</au><au>Vrahatis, M.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the number of real roots of polynomials through neural networks</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>51</volume><issue>3</issue><spage>527</spage><epage>536</epage><pages>527-536</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The ability of feedforward neural networks to identify the number of real roots of univariate polynomials is investigated. Furthermore, their ability to determine whether a system of multivariate polynomial equations has real solutions is examined on a problem of determining the structure of a molecule. The obtained experimental results indicate that neural networks are capable of performing this task with high accuracy even when the training set is very small compared to the test set.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2005.07.012</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2006-02, Vol.51 (3), p.527-536 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_29213407 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Feedforward Mathematical analysis Mathematical models Neural networks Number of zeros Roots Roots of polynomials Tasks Training |
title | Determining the number of real roots of polynomials through neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20number%20of%20real%20roots%20of%20polynomials%20through%20neural%20networks&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Mourrain,%20B.&rft.date=2006-02-01&rft.volume=51&rft.issue=3&rft.spage=527&rft.epage=536&rft.pages=527-536&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2005.07.012&rft_dat=%3Cproquest_cross%3E29213407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082184995&rft_id=info:pmid/&rft_els_id=S0898122105005195&rfr_iscdi=true |