Determining the number of real roots of polynomials through neural networks

The ability of feedforward neural networks to identify the number of real roots of univariate polynomials is investigated. Furthermore, their ability to determine whether a system of multivariate polynomial equations has real solutions is examined on a problem of determining the structure of a molec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2006-02, Vol.51 (3), p.527-536
Hauptverfasser: Mourrain, B., Pavlidis, N.G., Tasoulis, D.K., Vrahatis, M.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 536
container_issue 3
container_start_page 527
container_title Computers & mathematics with applications (1987)
container_volume 51
creator Mourrain, B.
Pavlidis, N.G.
Tasoulis, D.K.
Vrahatis, M.N.
description The ability of feedforward neural networks to identify the number of real roots of univariate polynomials is investigated. Furthermore, their ability to determine whether a system of multivariate polynomial equations has real solutions is examined on a problem of determining the structure of a molecule. The obtained experimental results indicate that neural networks are capable of performing this task with high accuracy even when the training set is very small compared to the test set.
doi_str_mv 10.1016/j.camwa.2005.07.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29213407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122105005195</els_id><sourcerecordid>29213407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-9667ff7e1f808aa40aa1739bd9fa7974736562377b4357d456e5042aefb5f1233</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgUQp_AKWTIgl4fyROB4YUPkUSCwwW256Li5JXOyEin-PS5kRk3Xy895wLyGnFAoKtLpYFY3pNqZgAGUBsgDK9siE1pLnsqrqfTKBWtU5ZYwekqMYVwAgOIMJebzGAUPnetcvs-ENs37s5hgyb7OAps2C90PcTmvffvW-c6aNyQU_Lt-yHseQTI_Dxof3eEwObPrGk993Sl5vb15m9_nT893D7OopbwTAkKuqktZKpLaG2hgBxlDJ1XyhrJFKCsmrsmJcyrngpVyIssISBDNo56WljPMpOdvtXQf_MWIcdOdig21revRj1EwxygXIBM__hBRqRhWViv-P1kKpMlG-o03wMQa0eh1cZ8JXQnpbh17pnzr0tg4NUqc6Uupyl8J0mU-HQcfGYd_gwgVsBr3w7s_8N5hBk2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082184995</pqid></control><display><type>article</type><title>Determining the number of real roots of polynomials through neural networks</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mourrain, B. ; Pavlidis, N.G. ; Tasoulis, D.K. ; Vrahatis, M.N.</creator><creatorcontrib>Mourrain, B. ; Pavlidis, N.G. ; Tasoulis, D.K. ; Vrahatis, M.N.</creatorcontrib><description>The ability of feedforward neural networks to identify the number of real roots of univariate polynomials is investigated. Furthermore, their ability to determine whether a system of multivariate polynomial equations has real solutions is examined on a problem of determining the structure of a molecule. The obtained experimental results indicate that neural networks are capable of performing this task with high accuracy even when the training set is very small compared to the test set.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2005.07.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accuracy ; Feedforward ; Mathematical analysis ; Mathematical models ; Neural networks ; Number of zeros ; Roots ; Roots of polynomials ; Tasks ; Training</subject><ispartof>Computers &amp; mathematics with applications (1987), 2006-02, Vol.51 (3), p.527-536</ispartof><rights>2006 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-9667ff7e1f808aa40aa1739bd9fa7974736562377b4357d456e5042aefb5f1233</citedby><cites>FETCH-LOGICAL-c400t-9667ff7e1f808aa40aa1739bd9fa7974736562377b4357d456e5042aefb5f1233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2005.07.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mourrain, B.</creatorcontrib><creatorcontrib>Pavlidis, N.G.</creatorcontrib><creatorcontrib>Tasoulis, D.K.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><title>Determining the number of real roots of polynomials through neural networks</title><title>Computers &amp; mathematics with applications (1987)</title><description>The ability of feedforward neural networks to identify the number of real roots of univariate polynomials is investigated. Furthermore, their ability to determine whether a system of multivariate polynomial equations has real solutions is examined on a problem of determining the structure of a molecule. The obtained experimental results indicate that neural networks are capable of performing this task with high accuracy even when the training set is very small compared to the test set.</description><subject>Accuracy</subject><subject>Feedforward</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Number of zeros</subject><subject>Roots</subject><subject>Roots of polynomials</subject><subject>Tasks</subject><subject>Training</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqN0T1PwzAQBmALgUQp_AKWTIgl4fyROB4YUPkUSCwwW256Li5JXOyEin-PS5kRk3Xy895wLyGnFAoKtLpYFY3pNqZgAGUBsgDK9siE1pLnsqrqfTKBWtU5ZYwekqMYVwAgOIMJebzGAUPnetcvs-ENs37s5hgyb7OAps2C90PcTmvffvW-c6aNyQU_Lt-yHseQTI_Dxof3eEwObPrGk993Sl5vb15m9_nT893D7OopbwTAkKuqktZKpLaG2hgBxlDJ1XyhrJFKCsmrsmJcyrngpVyIssISBDNo56WljPMpOdvtXQf_MWIcdOdig21revRj1EwxygXIBM__hBRqRhWViv-P1kKpMlG-o03wMQa0eh1cZ8JXQnpbh17pnzr0tg4NUqc6Uupyl8J0mU-HQcfGYd_gwgVsBr3w7s_8N5hBk2M</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Mourrain, B.</creator><creator>Pavlidis, N.G.</creator><creator>Tasoulis, D.K.</creator><creator>Vrahatis, M.N.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060201</creationdate><title>Determining the number of real roots of polynomials through neural networks</title><author>Mourrain, B. ; Pavlidis, N.G. ; Tasoulis, D.K. ; Vrahatis, M.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-9667ff7e1f808aa40aa1739bd9fa7974736562377b4357d456e5042aefb5f1233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accuracy</topic><topic>Feedforward</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Number of zeros</topic><topic>Roots</topic><topic>Roots of polynomials</topic><topic>Tasks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mourrain, B.</creatorcontrib><creatorcontrib>Pavlidis, N.G.</creatorcontrib><creatorcontrib>Tasoulis, D.K.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mourrain, B.</au><au>Pavlidis, N.G.</au><au>Tasoulis, D.K.</au><au>Vrahatis, M.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the number of real roots of polynomials through neural networks</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>51</volume><issue>3</issue><spage>527</spage><epage>536</epage><pages>527-536</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The ability of feedforward neural networks to identify the number of real roots of univariate polynomials is investigated. Furthermore, their ability to determine whether a system of multivariate polynomial equations has real solutions is examined on a problem of determining the structure of a molecule. The obtained experimental results indicate that neural networks are capable of performing this task with high accuracy even when the training set is very small compared to the test set.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2005.07.012</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2006-02, Vol.51 (3), p.527-536
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_29213407
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Feedforward
Mathematical analysis
Mathematical models
Neural networks
Number of zeros
Roots
Roots of polynomials
Tasks
Training
title Determining the number of real roots of polynomials through neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20number%20of%20real%20roots%20of%20polynomials%20through%20neural%20networks&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Mourrain,%20B.&rft.date=2006-02-01&rft.volume=51&rft.issue=3&rft.spage=527&rft.epage=536&rft.pages=527-536&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2005.07.012&rft_dat=%3Cproquest_cross%3E29213407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082184995&rft_id=info:pmid/&rft_els_id=S0898122105005195&rfr_iscdi=true