Quantitative real-time phase microscopy for extended depth-of-field imaging based on the 3D single-shot differential phase contrast (ssDPC) imaging method
Optical diffraction tomography (ODT) is a promising label-free imaging method capable of quantitatively measuring the three-dimensional (3D) refractive index distribution of transparent samples. In recent years, partially coherent ODT (PC-ODT) has attracted increasing attention due to its system sim...
Gespeichert in:
Veröffentlicht in: | Optics express 2024-01, Vol.32 (2), p.2081-2096 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2096 |
---|---|
container_issue | 2 |
container_start_page | 2081 |
container_title | Optics express |
container_volume | 32 |
creator | Wang, Jingfan Zhao, Xing Wang, Yan Li, Da |
description | Optical diffraction tomography (ODT) is a promising label-free imaging method capable of quantitatively measuring the three-dimensional (3D) refractive index distribution of transparent samples. In recent years, partially coherent ODT (PC-ODT) has attracted increasing attention due to its system simplicity and absence of laser speckle noise. Quantitative phase imaging (QPI) technologies represented by Fourier ptychographic microscopy (FPM), differential phase contrast (DPC) imaging and intensity diffraction tomography (IDT) need to collect several or hundreds of intensity images, which usually introduce motion artifacts when shooting fast-moving targets, leading to a decrease in image quality. Hence, a quantitative real-time phase microscopy (qRPM) for extended depth of field (DOF) imaging based on 3D single-shot differential phase contrast (ssDPC) imaging method is proposed in this research study. qRPM incorporates a microlens array (MLA) to simultaneously collect spatial information and angular information. In subsequent optical information processing, a deconvolution method is used to obtain intensity stacks under different illumination angles in a raw light field image. Importing the obtained intensity stack into the 3D DPC imaging model is able to finally obtain the 3D refractive index distribution. The captured four-dimensional light field information enables the reconstruction of 3D information in a single snapshot and extending the DOF of qRPM. The imaging capability of the proposed qRPM system is experimental verified on different samples, achieve single-exposure 3D label-free imaging with an extended DOF for 160 µm which is nearly 30 times higher than the traditional microscope system. |
doi_str_mv | 10.1364/OE.512285 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2921116276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921116276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-b930900ea008800edd0718dcbf617da142c5727b011bdaf25f7f432e85451b303</originalsourceid><addsrcrecordid>eNpNkctOwzAQRS0EoqWw4AeQl-0i4EdSJ0vUlodUqSDBOnLicWOUxMF2Ef0VvpZULRWrOxrdOTO6g9A1JbeUT-O71eI2oYylyQkaUpLFUUxScfqvHqAL7z8IobHIxDka8JRlQsTJEP28bmQbTJDBfAF2IOsomAZwV0kPuDGls7603RZr6zB8B2gVKKygC1VkdaQN1AqbRq5Nu8ZFP6OwbXGoAPM59n2zhshXNmBltAYH_S5ZH-ilbYOTPuCx9_OX2eTIaSBUVl2iMy1rD1cHHaH3h8Xb7Clarh6fZ_fLqOSMhKjIOMkIAUlImvaqFBE0VWWhp1QoSWNWJoKJglBaKKlZooWOOYM0iRNacMJHaLznds5-bsCHvDG-hLqWLdiNz1nGKKVTJqa9dbK37mLxDnTeuf5ot80pyXevyFeLfP-K3ntzwG6KBtTR-Zc9_wUrooUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921116276</pqid></control><display><type>article</type><title>Quantitative real-time phase microscopy for extended depth-of-field imaging based on the 3D single-shot differential phase contrast (ssDPC) imaging method</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Jingfan ; Zhao, Xing ; Wang, Yan ; Li, Da</creator><creatorcontrib>Wang, Jingfan ; Zhao, Xing ; Wang, Yan ; Li, Da</creatorcontrib><description>Optical diffraction tomography (ODT) is a promising label-free imaging method capable of quantitatively measuring the three-dimensional (3D) refractive index distribution of transparent samples. In recent years, partially coherent ODT (PC-ODT) has attracted increasing attention due to its system simplicity and absence of laser speckle noise. Quantitative phase imaging (QPI) technologies represented by Fourier ptychographic microscopy (FPM), differential phase contrast (DPC) imaging and intensity diffraction tomography (IDT) need to collect several or hundreds of intensity images, which usually introduce motion artifacts when shooting fast-moving targets, leading to a decrease in image quality. Hence, a quantitative real-time phase microscopy (qRPM) for extended depth of field (DOF) imaging based on 3D single-shot differential phase contrast (ssDPC) imaging method is proposed in this research study. qRPM incorporates a microlens array (MLA) to simultaneously collect spatial information and angular information. In subsequent optical information processing, a deconvolution method is used to obtain intensity stacks under different illumination angles in a raw light field image. Importing the obtained intensity stack into the 3D DPC imaging model is able to finally obtain the 3D refractive index distribution. The captured four-dimensional light field information enables the reconstruction of 3D information in a single snapshot and extending the DOF of qRPM. The imaging capability of the proposed qRPM system is experimental verified on different samples, achieve single-exposure 3D label-free imaging with an extended DOF for 160 µm which is nearly 30 times higher than the traditional microscope system.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.512285</identifier><identifier>PMID: 38297745</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2024-01, Vol.32 (2), p.2081-2096</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-b930900ea008800edd0718dcbf617da142c5727b011bdaf25f7f432e85451b303</citedby><cites>FETCH-LOGICAL-c320t-b930900ea008800edd0718dcbf617da142c5727b011bdaf25f7f432e85451b303</cites><orcidid>0000-0002-4414-3930 ; 0000-0002-1257-6635 ; 0000-0003-4849-0603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38297745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jingfan</creatorcontrib><creatorcontrib>Zhao, Xing</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Li, Da</creatorcontrib><title>Quantitative real-time phase microscopy for extended depth-of-field imaging based on the 3D single-shot differential phase contrast (ssDPC) imaging method</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Optical diffraction tomography (ODT) is a promising label-free imaging method capable of quantitatively measuring the three-dimensional (3D) refractive index distribution of transparent samples. In recent years, partially coherent ODT (PC-ODT) has attracted increasing attention due to its system simplicity and absence of laser speckle noise. Quantitative phase imaging (QPI) technologies represented by Fourier ptychographic microscopy (FPM), differential phase contrast (DPC) imaging and intensity diffraction tomography (IDT) need to collect several or hundreds of intensity images, which usually introduce motion artifacts when shooting fast-moving targets, leading to a decrease in image quality. Hence, a quantitative real-time phase microscopy (qRPM) for extended depth of field (DOF) imaging based on 3D single-shot differential phase contrast (ssDPC) imaging method is proposed in this research study. qRPM incorporates a microlens array (MLA) to simultaneously collect spatial information and angular information. In subsequent optical information processing, a deconvolution method is used to obtain intensity stacks under different illumination angles in a raw light field image. Importing the obtained intensity stack into the 3D DPC imaging model is able to finally obtain the 3D refractive index distribution. The captured four-dimensional light field information enables the reconstruction of 3D information in a single snapshot and extending the DOF of qRPM. The imaging capability of the proposed qRPM system is experimental verified on different samples, achieve single-exposure 3D label-free imaging with an extended DOF for 160 µm which is nearly 30 times higher than the traditional microscope system.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkctOwzAQRS0EoqWw4AeQl-0i4EdSJ0vUlodUqSDBOnLicWOUxMF2Ef0VvpZULRWrOxrdOTO6g9A1JbeUT-O71eI2oYylyQkaUpLFUUxScfqvHqAL7z8IobHIxDka8JRlQsTJEP28bmQbTJDBfAF2IOsomAZwV0kPuDGls7603RZr6zB8B2gVKKygC1VkdaQN1AqbRq5Nu8ZFP6OwbXGoAPM59n2zhshXNmBltAYH_S5ZH-ilbYOTPuCx9_OX2eTIaSBUVl2iMy1rD1cHHaH3h8Xb7Clarh6fZ_fLqOSMhKjIOMkIAUlImvaqFBE0VWWhp1QoSWNWJoKJglBaKKlZooWOOYM0iRNacMJHaLznds5-bsCHvDG-hLqWLdiNz1nGKKVTJqa9dbK37mLxDnTeuf5ot80pyXevyFeLfP-K3ntzwG6KBtTR-Zc9_wUrooUc</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Wang, Jingfan</creator><creator>Zhao, Xing</creator><creator>Wang, Yan</creator><creator>Li, Da</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4414-3930</orcidid><orcidid>https://orcid.org/0000-0002-1257-6635</orcidid><orcidid>https://orcid.org/0000-0003-4849-0603</orcidid></search><sort><creationdate>20240115</creationdate><title>Quantitative real-time phase microscopy for extended depth-of-field imaging based on the 3D single-shot differential phase contrast (ssDPC) imaging method</title><author>Wang, Jingfan ; Zhao, Xing ; Wang, Yan ; Li, Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-b930900ea008800edd0718dcbf617da142c5727b011bdaf25f7f432e85451b303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingfan</creatorcontrib><creatorcontrib>Zhao, Xing</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Li, Da</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingfan</au><au>Zhao, Xing</au><au>Wang, Yan</au><au>Li, Da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative real-time phase microscopy for extended depth-of-field imaging based on the 3D single-shot differential phase contrast (ssDPC) imaging method</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2024-01-15</date><risdate>2024</risdate><volume>32</volume><issue>2</issue><spage>2081</spage><epage>2096</epage><pages>2081-2096</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Optical diffraction tomography (ODT) is a promising label-free imaging method capable of quantitatively measuring the three-dimensional (3D) refractive index distribution of transparent samples. In recent years, partially coherent ODT (PC-ODT) has attracted increasing attention due to its system simplicity and absence of laser speckle noise. Quantitative phase imaging (QPI) technologies represented by Fourier ptychographic microscopy (FPM), differential phase contrast (DPC) imaging and intensity diffraction tomography (IDT) need to collect several or hundreds of intensity images, which usually introduce motion artifacts when shooting fast-moving targets, leading to a decrease in image quality. Hence, a quantitative real-time phase microscopy (qRPM) for extended depth of field (DOF) imaging based on 3D single-shot differential phase contrast (ssDPC) imaging method is proposed in this research study. qRPM incorporates a microlens array (MLA) to simultaneously collect spatial information and angular information. In subsequent optical information processing, a deconvolution method is used to obtain intensity stacks under different illumination angles in a raw light field image. Importing the obtained intensity stack into the 3D DPC imaging model is able to finally obtain the 3D refractive index distribution. The captured four-dimensional light field information enables the reconstruction of 3D information in a single snapshot and extending the DOF of qRPM. The imaging capability of the proposed qRPM system is experimental verified on different samples, achieve single-exposure 3D label-free imaging with an extended DOF for 160 µm which is nearly 30 times higher than the traditional microscope system.</abstract><cop>United States</cop><pmid>38297745</pmid><doi>10.1364/OE.512285</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4414-3930</orcidid><orcidid>https://orcid.org/0000-0002-1257-6635</orcidid><orcidid>https://orcid.org/0000-0003-4849-0603</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2024-01, Vol.32 (2), p.2081-2096 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2921116276 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Quantitative real-time phase microscopy for extended depth-of-field imaging based on the 3D single-shot differential phase contrast (ssDPC) imaging method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20real-time%20phase%20microscopy%20for%20extended%20depth-of-field%20imaging%20based%20on%20the%203D%20single-shot%20differential%20phase%20contrast%20(ssDPC)%20imaging%20method&rft.jtitle=Optics%20express&rft.au=Wang,%20Jingfan&rft.date=2024-01-15&rft.volume=32&rft.issue=2&rft.spage=2081&rft.epage=2096&rft.pages=2081-2096&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.512285&rft_dat=%3Cproquest_cross%3E2921116276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921116276&rft_id=info:pmid/38297745&rfr_iscdi=true |