A discontinuous finite element formulation for Helmholtz equation
A discontinuous finite element formulation for Helmholtz problems is presented with C0 continuity across inter-element boundaries enforced in a weak sense depending on two parameters β and λ whose choice is crucial for the performance of the proposed method. These parameters are chosen through one d...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2006-07, Vol.195 (33-36), p.4018-4035 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4035 |
---|---|
container_issue | 33-36 |
container_start_page | 4018 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 195 |
creator | Alvarez, Gustavo Benitez Loula, Abimael Fernando Dourado do Carmo, Eduardo Gomes Dutra Rochinha, Fernando Alves |
description | A discontinuous finite element formulation for Helmholtz problems is presented with C0 continuity across inter-element boundaries enforced in a weak sense depending on two parameters β and λ whose choice is crucial for the performance of the proposed method. These parameters are chosen through one dimension numerical experiments aiming at minimizing the pollution error. Optimal values of these parameters are then adopted in more general situations. The accuracy and stability of the proposed formulation for linear and bilinear shape functions are demonstrated in several numerical examples in one and two dimensions. |
doi_str_mv | 10.1016/j.cma.2005.07.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29211094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782505003439</els_id><sourcerecordid>29211094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-eaaa8f246d6bc6aaada1ffb43c558f9994c022e279db9bfd6a3bf7593611aeb3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4Ab3vR265J9iMbPBXxCwpeeg_Z7ARTsklNsoL-elNb8OZc5oM3b948hK4Jrggm3d22UpOsKMZthVmFSX2CFqRnvKSk7k_RAuOmLVlP23N0EeMW5-gJXaDVqhhNVN4l42Y_x0IbZxIUYGEClwrtwzRbmYx3-7p4ATu9e5u-C_iYf8eX6ExLG-HqmJdo8_S4eXgp12_Prw-rdanqtk8lSCl7TZtu7AbV5WaUROuhqVXb9ppz3ihMKVDGx4EPeuxkPWjW8rojRMJQL9HtgXYX_McMMYkp6wZrpYOsW1BOCcG8yUByAKrgYwygxS6YSYYvQbDYeyW2Insl9l4JzET2Ku_cHMllVNLqIJ0y8W-Rsa4hGGfc_QEH-dFPA0FEZcApGE0AlcTozT9XfgBRqoBB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29211094</pqid></control><display><type>article</type><title>A discontinuous finite element formulation for Helmholtz equation</title><source>Elsevier ScienceDirect Journals</source><creator>Alvarez, Gustavo Benitez ; Loula, Abimael Fernando Dourado ; do Carmo, Eduardo Gomes Dutra ; Rochinha, Fernando Alves</creator><creatorcontrib>Alvarez, Gustavo Benitez ; Loula, Abimael Fernando Dourado ; do Carmo, Eduardo Gomes Dutra ; Rochinha, Fernando Alves</creatorcontrib><description>A discontinuous finite element formulation for Helmholtz problems is presented with C0 continuity across inter-element boundaries enforced in a weak sense depending on two parameters β and λ whose choice is crucial for the performance of the proposed method. These parameters are chosen through one dimension numerical experiments aiming at minimizing the pollution error. Optimal values of these parameters are then adopted in more general situations. The accuracy and stability of the proposed formulation for linear and bilinear shape functions are demonstrated in several numerical examples in one and two dimensions.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2005.07.013</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Discontinuous FEM ; Discontinuous Galerkin ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Helmholtz equation ; Mathematical methods in physics ; Physics ; Stabilization</subject><ispartof>Computer methods in applied mechanics and engineering, 2006-07, Vol.195 (33-36), p.4018-4035</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-eaaa8f246d6bc6aaada1ffb43c558f9994c022e279db9bfd6a3bf7593611aeb3</citedby><cites>FETCH-LOGICAL-c358t-eaaa8f246d6bc6aaada1ffb43c558f9994c022e279db9bfd6a3bf7593611aeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2005.07.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17764100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarez, Gustavo Benitez</creatorcontrib><creatorcontrib>Loula, Abimael Fernando Dourado</creatorcontrib><creatorcontrib>do Carmo, Eduardo Gomes Dutra</creatorcontrib><creatorcontrib>Rochinha, Fernando Alves</creatorcontrib><title>A discontinuous finite element formulation for Helmholtz equation</title><title>Computer methods in applied mechanics and engineering</title><description>A discontinuous finite element formulation for Helmholtz problems is presented with C0 continuity across inter-element boundaries enforced in a weak sense depending on two parameters β and λ whose choice is crucial for the performance of the proposed method. These parameters are chosen through one dimension numerical experiments aiming at minimizing the pollution error. Optimal values of these parameters are then adopted in more general situations. The accuracy and stability of the proposed formulation for linear and bilinear shape functions are demonstrated in several numerical examples in one and two dimensions.</description><subject>Computational techniques</subject><subject>Discontinuous FEM</subject><subject>Discontinuous Galerkin</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Helmholtz equation</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Stabilization</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4Ab3vR265J9iMbPBXxCwpeeg_Z7ARTsklNsoL-elNb8OZc5oM3b948hK4Jrggm3d22UpOsKMZthVmFSX2CFqRnvKSk7k_RAuOmLVlP23N0EeMW5-gJXaDVqhhNVN4l42Y_x0IbZxIUYGEClwrtwzRbmYx3-7p4ATu9e5u-C_iYf8eX6ExLG-HqmJdo8_S4eXgp12_Prw-rdanqtk8lSCl7TZtu7AbV5WaUROuhqVXb9ppz3ihMKVDGx4EPeuxkPWjW8rojRMJQL9HtgXYX_McMMYkp6wZrpYOsW1BOCcG8yUByAKrgYwygxS6YSYYvQbDYeyW2Insl9l4JzET2Ku_cHMllVNLqIJ0y8W-Rsa4hGGfc_QEH-dFPA0FEZcApGE0AlcTozT9XfgBRqoBB</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Alvarez, Gustavo Benitez</creator><creator>Loula, Abimael Fernando Dourado</creator><creator>do Carmo, Eduardo Gomes Dutra</creator><creator>Rochinha, Fernando Alves</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060701</creationdate><title>A discontinuous finite element formulation for Helmholtz equation</title><author>Alvarez, Gustavo Benitez ; Loula, Abimael Fernando Dourado ; do Carmo, Eduardo Gomes Dutra ; Rochinha, Fernando Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-eaaa8f246d6bc6aaada1ffb43c558f9994c022e279db9bfd6a3bf7593611aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computational techniques</topic><topic>Discontinuous FEM</topic><topic>Discontinuous Galerkin</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Helmholtz equation</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez, Gustavo Benitez</creatorcontrib><creatorcontrib>Loula, Abimael Fernando Dourado</creatorcontrib><creatorcontrib>do Carmo, Eduardo Gomes Dutra</creatorcontrib><creatorcontrib>Rochinha, Fernando Alves</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez, Gustavo Benitez</au><au>Loula, Abimael Fernando Dourado</au><au>do Carmo, Eduardo Gomes Dutra</au><au>Rochinha, Fernando Alves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A discontinuous finite element formulation for Helmholtz equation</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>195</volume><issue>33-36</issue><spage>4018</spage><epage>4035</epage><pages>4018-4035</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>A discontinuous finite element formulation for Helmholtz problems is presented with C0 continuity across inter-element boundaries enforced in a weak sense depending on two parameters β and λ whose choice is crucial for the performance of the proposed method. These parameters are chosen through one dimension numerical experiments aiming at minimizing the pollution error. Optimal values of these parameters are then adopted in more general situations. The accuracy and stability of the proposed formulation for linear and bilinear shape functions are demonstrated in several numerical examples in one and two dimensions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2005.07.013</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2006-07, Vol.195 (33-36), p.4018-4035 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_29211094 |
source | Elsevier ScienceDirect Journals |
subjects | Computational techniques Discontinuous FEM Discontinuous Galerkin Exact sciences and technology Fundamental areas of phenomenology (including applications) Helmholtz equation Mathematical methods in physics Physics Stabilization |
title | A discontinuous finite element formulation for Helmholtz equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20discontinuous%20finite%20element%20formulation%20for%20Helmholtz%20equation&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Alvarez,%20Gustavo%20Benitez&rft.date=2006-07-01&rft.volume=195&rft.issue=33-36&rft.spage=4018&rft.epage=4035&rft.pages=4018-4035&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2005.07.013&rft_dat=%3Cproquest_cross%3E29211094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29211094&rft_id=info:pmid/&rft_els_id=S0045782505003439&rfr_iscdi=true |