Development of an anodically-bonded test surface to obtain fundamental liquid immersion thermal management data for electronic devices

The study described in this paper aims at designing and developing the fabrication technique for an enhanced surface heat sink to document one dimensional pool boiling heat transfer data. The heat sink was designed to simulate a multichip module and symmetry was incorporated to eliminate back heat l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2004-07, Vol.113 (2), p.212-217
Hauptverfasser: Nimkar, Nitesh D., Bhavnani, Sushil H., Ellis, Charles D., Jaeger, Richard C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 2
container_start_page 212
container_title Sensors and actuators. A. Physical.
container_volume 113
creator Nimkar, Nitesh D.
Bhavnani, Sushil H.
Ellis, Charles D.
Jaeger, Richard C.
description The study described in this paper aims at designing and developing the fabrication technique for an enhanced surface heat sink to document one dimensional pool boiling heat transfer data. The heat sink was designed to simulate a multichip module and symmetry was incorporated to eliminate back heat loss. Anodic bonding, a commonly used technique in the fabrication of sensors and actuators, was used to create silicon-to-glass and aluminum-to-glass bonds. Using glass, a low conductivity substrate, minimized spreading losses. Surface enhancement was achieved by fabricating micro-pyramidal surface structures using tetra methyl ammonium hydroxide (TMAH) anisotropic etch of 100 silicon. The micro-pyramidal cavities were 149mum tall, with a 40mum square mouth opening, arranged in a square array. Elimination of the back side heat loss and spreading ensured one dimensional heat transfer and also yielded a more realistic number for the critical heat flux (CHF). The dielectric fluid, FC 72, a popular choice for direct immersion cooling systems was the test fluid. The paper compares the results of the fabricated heat sink with a similar enhanced heat sink etched in silicon.
doi_str_mv 10.1016/j.sna.2004.02.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29209557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29209557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-b3d4eeae3432bc391346ec6c5b8fc464c84398fc6026a3f36f3cb2461011d7da3</originalsourceid><addsrcrecordid>eNotkE9LAzEQxfegYK1-AG85eduaTdLd7lHqXyh40XOYTSaakk3aJFvoF_Bzm6rwYAbmzYP3q6qbhi4a2rR320XysGCUigVlRauzakZ7JmrBRHdRXaa0pZRy3nWz6vsBD-jCbkSfSTAEfFHQVoFzx3oIXqMmGVMmaYoGFJIcSBgyWE_M5DWcHsERZ_eT1cSOI8Zkgyf5C-NYDiN4-MTfeA0ZiAmRoEOVY_BWEY0HqzBdVecGXMLr_zmvPp4e39cv9ebt-XV9v6kV60SuB64FIiAXnA2K9w0XLapWLYeVUaIVaiV4X9aWsha44a3hamCiLVga3Wng8-r2L3cXw34qteRok0LnwGOYkmQ9o_1y2RVj82dUMaQU0chdtCPEo2yoPFGWW1koyxNlSVnRiv8ACip26g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29209557</pqid></control><display><type>article</type><title>Development of an anodically-bonded test surface to obtain fundamental liquid immersion thermal management data for electronic devices</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nimkar, Nitesh D. ; Bhavnani, Sushil H. ; Ellis, Charles D. ; Jaeger, Richard C.</creator><creatorcontrib>Nimkar, Nitesh D. ; Bhavnani, Sushil H. ; Ellis, Charles D. ; Jaeger, Richard C.</creatorcontrib><description>The study described in this paper aims at designing and developing the fabrication technique for an enhanced surface heat sink to document one dimensional pool boiling heat transfer data. The heat sink was designed to simulate a multichip module and symmetry was incorporated to eliminate back heat loss. Anodic bonding, a commonly used technique in the fabrication of sensors and actuators, was used to create silicon-to-glass and aluminum-to-glass bonds. Using glass, a low conductivity substrate, minimized spreading losses. Surface enhancement was achieved by fabricating micro-pyramidal surface structures using tetra methyl ammonium hydroxide (TMAH) anisotropic etch of 100 silicon. The micro-pyramidal cavities were 149mum tall, with a 40mum square mouth opening, arranged in a square array. Elimination of the back side heat loss and spreading ensured one dimensional heat transfer and also yielded a more realistic number for the critical heat flux (CHF). The dielectric fluid, FC 72, a popular choice for direct immersion cooling systems was the test fluid. The paper compares the results of the fabricated heat sink with a similar enhanced heat sink etched in silicon.</description><identifier>ISSN: 0924-4247</identifier><identifier>DOI: 10.1016/j.sna.2004.02.028</identifier><language>eng</language><ispartof>Sensors and actuators. A. Physical., 2004-07, Vol.113 (2), p.212-217</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-b3d4eeae3432bc391346ec6c5b8fc464c84398fc6026a3f36f3cb2461011d7da3</citedby><cites>FETCH-LOGICAL-c274t-b3d4eeae3432bc391346ec6c5b8fc464c84398fc6026a3f36f3cb2461011d7da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nimkar, Nitesh D.</creatorcontrib><creatorcontrib>Bhavnani, Sushil H.</creatorcontrib><creatorcontrib>Ellis, Charles D.</creatorcontrib><creatorcontrib>Jaeger, Richard C.</creatorcontrib><title>Development of an anodically-bonded test surface to obtain fundamental liquid immersion thermal management data for electronic devices</title><title>Sensors and actuators. A. Physical.</title><description>The study described in this paper aims at designing and developing the fabrication technique for an enhanced surface heat sink to document one dimensional pool boiling heat transfer data. The heat sink was designed to simulate a multichip module and symmetry was incorporated to eliminate back heat loss. Anodic bonding, a commonly used technique in the fabrication of sensors and actuators, was used to create silicon-to-glass and aluminum-to-glass bonds. Using glass, a low conductivity substrate, minimized spreading losses. Surface enhancement was achieved by fabricating micro-pyramidal surface structures using tetra methyl ammonium hydroxide (TMAH) anisotropic etch of 100 silicon. The micro-pyramidal cavities were 149mum tall, with a 40mum square mouth opening, arranged in a square array. Elimination of the back side heat loss and spreading ensured one dimensional heat transfer and also yielded a more realistic number for the critical heat flux (CHF). The dielectric fluid, FC 72, a popular choice for direct immersion cooling systems was the test fluid. The paper compares the results of the fabricated heat sink with a similar enhanced heat sink etched in silicon.</description><issn>0924-4247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEQxfegYK1-AG85eduaTdLd7lHqXyh40XOYTSaakk3aJFvoF_Bzm6rwYAbmzYP3q6qbhi4a2rR320XysGCUigVlRauzakZ7JmrBRHdRXaa0pZRy3nWz6vsBD-jCbkSfSTAEfFHQVoFzx3oIXqMmGVMmaYoGFJIcSBgyWE_M5DWcHsERZ_eT1cSOI8Zkgyf5C-NYDiN4-MTfeA0ZiAmRoEOVY_BWEY0HqzBdVecGXMLr_zmvPp4e39cv9ebt-XV9v6kV60SuB64FIiAXnA2K9w0XLapWLYeVUaIVaiV4X9aWsha44a3hamCiLVga3Wng8-r2L3cXw34qteRok0LnwGOYkmQ9o_1y2RVj82dUMaQU0chdtCPEo2yoPFGWW1koyxNlSVnRiv8ACip26g</recordid><startdate>20040705</startdate><enddate>20040705</enddate><creator>Nimkar, Nitesh D.</creator><creator>Bhavnani, Sushil H.</creator><creator>Ellis, Charles D.</creator><creator>Jaeger, Richard C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20040705</creationdate><title>Development of an anodically-bonded test surface to obtain fundamental liquid immersion thermal management data for electronic devices</title><author>Nimkar, Nitesh D. ; Bhavnani, Sushil H. ; Ellis, Charles D. ; Jaeger, Richard C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-b3d4eeae3432bc391346ec6c5b8fc464c84398fc6026a3f36f3cb2461011d7da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nimkar, Nitesh D.</creatorcontrib><creatorcontrib>Bhavnani, Sushil H.</creatorcontrib><creatorcontrib>Ellis, Charles D.</creatorcontrib><creatorcontrib>Jaeger, Richard C.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nimkar, Nitesh D.</au><au>Bhavnani, Sushil H.</au><au>Ellis, Charles D.</au><au>Jaeger, Richard C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an anodically-bonded test surface to obtain fundamental liquid immersion thermal management data for electronic devices</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2004-07-05</date><risdate>2004</risdate><volume>113</volume><issue>2</issue><spage>212</spage><epage>217</epage><pages>212-217</pages><issn>0924-4247</issn><abstract>The study described in this paper aims at designing and developing the fabrication technique for an enhanced surface heat sink to document one dimensional pool boiling heat transfer data. The heat sink was designed to simulate a multichip module and symmetry was incorporated to eliminate back heat loss. Anodic bonding, a commonly used technique in the fabrication of sensors and actuators, was used to create silicon-to-glass and aluminum-to-glass bonds. Using glass, a low conductivity substrate, minimized spreading losses. Surface enhancement was achieved by fabricating micro-pyramidal surface structures using tetra methyl ammonium hydroxide (TMAH) anisotropic etch of 100 silicon. The micro-pyramidal cavities were 149mum tall, with a 40mum square mouth opening, arranged in a square array. Elimination of the back side heat loss and spreading ensured one dimensional heat transfer and also yielded a more realistic number for the critical heat flux (CHF). The dielectric fluid, FC 72, a popular choice for direct immersion cooling systems was the test fluid. The paper compares the results of the fabricated heat sink with a similar enhanced heat sink etched in silicon.</abstract><doi>10.1016/j.sna.2004.02.028</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2004-07, Vol.113 (2), p.212-217
issn 0924-4247
language eng
recordid cdi_proquest_miscellaneous_29209557
source Access via ScienceDirect (Elsevier)
title Development of an anodically-bonded test surface to obtain fundamental liquid immersion thermal management data for electronic devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20anodically-bonded%20test%20surface%20to%20obtain%20fundamental%20liquid%20immersion%20thermal%20management%20data%20for%20electronic%20devices&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Nimkar,%20Nitesh%20D.&rft.date=2004-07-05&rft.volume=113&rft.issue=2&rft.spage=212&rft.epage=217&rft.pages=212-217&rft.issn=0924-4247&rft_id=info:doi/10.1016/j.sna.2004.02.028&rft_dat=%3Cproquest_cross%3E29209557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29209557&rft_id=info:pmid/&rfr_iscdi=true