Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho
Verification of distributed hydrologic models is rare owing to the lack of spatially detailed field measurements and a common mismatch between the scale at which soil hydraulic properties are measured and the scale of a single modelling unit. In this study, two of the most commonly calibrated parame...
Gespeichert in:
Veröffentlicht in: | Hydrological processes 2007-01, Vol.21 (1), p.110-122 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | 1 |
container_start_page | 110 |
container_title | Hydrological processes |
container_volume | 21 |
creator | Brooks, Erin S. Boll, Jan McDaniel, Paul A. |
description | Verification of distributed hydrologic models is rare owing to the lack of spatially detailed field measurements and a common mismatch between the scale at which soil hydraulic properties are measured and the scale of a single modelling unit. In this study, two of the most commonly calibrated parameters, i.e. soil depth and the vertical distribution of lateral saturated hydraulic conductivity Ks, were eliminated by a spatially detailed soil characterization and results of a hillslope‐scale field experiment. The soil moisture routing (SMR) model, a geographic information system‐based hydrologic model, was modified to represent the dominant hydrologic processes for the Palouse region of northern Idaho. Modifications included Ks as a double exponential function of depth in a single soil layer, a snow accumulation and melt algorithm, and a simple relationship between storage and perched water depth (PWD) using the drainable porosity. The model was applied to a 2 ha catchment without calibration to measured data. Distributed responses were compared with observed PWD over a 3‐year period on a 10 m × 15 m grid. Integrated responses were compared with observed surface runoff at the catchment outlet. The modified SMR model simulated the PWD fluctuations remarkably well, especially considering the shallow soils in this catchment: a 0·20 m error in PWD is equivalent to only a 1·6% error in predicted soil moisture content. Simulations also captured PWD fluctuations during a year with high spatial variability of snow accumulation and snowmelt rates at upslope, mid‐slope, and toe slope positions with errors as low as 0·09 m, 0·12 m, and 0·12 m respectively. Errors in distributed and integrated model simulations were attributed mostly to misrepresentation of rain events and snowmelt timing problems. In one location in the catchment, simulated PWD was consistently greater than observed PWD, indicating a localized recharge zone, which was not identified by the soil morphological survey. Copyright © 2006 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/hyp.6230 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29209429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20998151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3650-a812a8fe776460dd23a54de4b223f27d8dbe9594d79a6e694f133f3d1698235d3</originalsourceid><addsrcrecordid>eNqF0VFLHDEQB_BQKvR6Cv0IeSo-dO0k2c0mj3K2KoiKKNK-hNxl9nZ1d7Mme7T76idvjhPBh-JTmPCbYZg_IV8YHDEA_r2ehiPJBXwgMwZaZwxU8ZHMQKkik6DKT-RzjA8AkIOCGXk-aeIYmuVmREdt72jTj7gOdlsGjIPvI1JfUUvX6NP_UDerZCofOjs2vqdxiiN22dLG1FFPLvjWr5PpvMM2STrWSNEmFHp6bVu_SQMDrlPvN3rubO33yV5l24gHL--c3P38cbs4yy6uTs8XxxfZSsgCMqsYt6rCspS5BOe4sEXuMF9yLipeOuWWqAudu1JbiVLnFROiEo5JrbgonJiTr7u5Q_BPG4yj6Zq4wra1PaatDNccdM71-zDdVbGCJXi4g6vgYwxYmSE0nQ2TYWC2aZiUhtmmkWi2o3-aFqf_OnP26_qtT_Hg31dvw6ORpSgLc395ai5ZvlA3gpnf4h-xuJxL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20998151</pqid></control><display><type>article</type><title>Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho</title><source>Wiley Blackwell Single Titles</source><creator>Brooks, Erin S. ; Boll, Jan ; McDaniel, Paul A.</creator><creatorcontrib>Brooks, Erin S. ; Boll, Jan ; McDaniel, Paul A.</creatorcontrib><description>Verification of distributed hydrologic models is rare owing to the lack of spatially detailed field measurements and a common mismatch between the scale at which soil hydraulic properties are measured and the scale of a single modelling unit. In this study, two of the most commonly calibrated parameters, i.e. soil depth and the vertical distribution of lateral saturated hydraulic conductivity Ks, were eliminated by a spatially detailed soil characterization and results of a hillslope‐scale field experiment. The soil moisture routing (SMR) model, a geographic information system‐based hydrologic model, was modified to represent the dominant hydrologic processes for the Palouse region of northern Idaho. Modifications included Ks as a double exponential function of depth in a single soil layer, a snow accumulation and melt algorithm, and a simple relationship between storage and perched water depth (PWD) using the drainable porosity. The model was applied to a 2 ha catchment without calibration to measured data. Distributed responses were compared with observed PWD over a 3‐year period on a 10 m × 15 m grid. Integrated responses were compared with observed surface runoff at the catchment outlet. The modified SMR model simulated the PWD fluctuations remarkably well, especially considering the shallow soils in this catchment: a 0·20 m error in PWD is equivalent to only a 1·6% error in predicted soil moisture content. Simulations also captured PWD fluctuations during a year with high spatial variability of snow accumulation and snowmelt rates at upslope, mid‐slope, and toe slope positions with errors as low as 0·09 m, 0·12 m, and 0·12 m respectively. Errors in distributed and integrated model simulations were attributed mostly to misrepresentation of rain events and snowmelt timing problems. In one location in the catchment, simulated PWD was consistently greater than observed PWD, indicating a localized recharge zone, which was not identified by the soil morphological survey. Copyright © 2006 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.6230</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>fragipans ; GIS ; Palouse ; perched water tables ; saturated hydraulic conductivity ; SMR model ; snowmelt ; variable source area runoff</subject><ispartof>Hydrological processes, 2007-01, Vol.21 (1), p.110-122</ispartof><rights>Copyright © 2006 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3650-a812a8fe776460dd23a54de4b223f27d8dbe9594d79a6e694f133f3d1698235d3</citedby><cites>FETCH-LOGICAL-c3650-a812a8fe776460dd23a54de4b223f27d8dbe9594d79a6e694f133f3d1698235d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.6230$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.6230$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Brooks, Erin S.</creatorcontrib><creatorcontrib>Boll, Jan</creatorcontrib><creatorcontrib>McDaniel, Paul A.</creatorcontrib><title>Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>Verification of distributed hydrologic models is rare owing to the lack of spatially detailed field measurements and a common mismatch between the scale at which soil hydraulic properties are measured and the scale of a single modelling unit. In this study, two of the most commonly calibrated parameters, i.e. soil depth and the vertical distribution of lateral saturated hydraulic conductivity Ks, were eliminated by a spatially detailed soil characterization and results of a hillslope‐scale field experiment. The soil moisture routing (SMR) model, a geographic information system‐based hydrologic model, was modified to represent the dominant hydrologic processes for the Palouse region of northern Idaho. Modifications included Ks as a double exponential function of depth in a single soil layer, a snow accumulation and melt algorithm, and a simple relationship between storage and perched water depth (PWD) using the drainable porosity. The model was applied to a 2 ha catchment without calibration to measured data. Distributed responses were compared with observed PWD over a 3‐year period on a 10 m × 15 m grid. Integrated responses were compared with observed surface runoff at the catchment outlet. The modified SMR model simulated the PWD fluctuations remarkably well, especially considering the shallow soils in this catchment: a 0·20 m error in PWD is equivalent to only a 1·6% error in predicted soil moisture content. Simulations also captured PWD fluctuations during a year with high spatial variability of snow accumulation and snowmelt rates at upslope, mid‐slope, and toe slope positions with errors as low as 0·09 m, 0·12 m, and 0·12 m respectively. Errors in distributed and integrated model simulations were attributed mostly to misrepresentation of rain events and snowmelt timing problems. In one location in the catchment, simulated PWD was consistently greater than observed PWD, indicating a localized recharge zone, which was not identified by the soil morphological survey. Copyright © 2006 John Wiley & Sons, Ltd.</description><subject>fragipans</subject><subject>GIS</subject><subject>Palouse</subject><subject>perched water tables</subject><subject>saturated hydraulic conductivity</subject><subject>SMR model</subject><subject>snowmelt</subject><subject>variable source area runoff</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0VFLHDEQB_BQKvR6Cv0IeSo-dO0k2c0mj3K2KoiKKNK-hNxl9nZ1d7Mme7T76idvjhPBh-JTmPCbYZg_IV8YHDEA_r2ehiPJBXwgMwZaZwxU8ZHMQKkik6DKT-RzjA8AkIOCGXk-aeIYmuVmREdt72jTj7gOdlsGjIPvI1JfUUvX6NP_UDerZCofOjs2vqdxiiN22dLG1FFPLvjWr5PpvMM2STrWSNEmFHp6bVu_SQMDrlPvN3rubO33yV5l24gHL--c3P38cbs4yy6uTs8XxxfZSsgCMqsYt6rCspS5BOe4sEXuMF9yLipeOuWWqAudu1JbiVLnFROiEo5JrbgonJiTr7u5Q_BPG4yj6Zq4wra1PaatDNccdM71-zDdVbGCJXi4g6vgYwxYmSE0nQ2TYWC2aZiUhtmmkWi2o3-aFqf_OnP26_qtT_Hg31dvw6ORpSgLc395ai5ZvlA3gpnf4h-xuJxL</recordid><startdate>20070102</startdate><enddate>20070102</enddate><creator>Brooks, Erin S.</creator><creator>Boll, Jan</creator><creator>McDaniel, Paul A.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070102</creationdate><title>Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho</title><author>Brooks, Erin S. ; Boll, Jan ; McDaniel, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3650-a812a8fe776460dd23a54de4b223f27d8dbe9594d79a6e694f133f3d1698235d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>fragipans</topic><topic>GIS</topic><topic>Palouse</topic><topic>perched water tables</topic><topic>saturated hydraulic conductivity</topic><topic>SMR model</topic><topic>snowmelt</topic><topic>variable source area runoff</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, Erin S.</creatorcontrib><creatorcontrib>Boll, Jan</creatorcontrib><creatorcontrib>McDaniel, Paul A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, Erin S.</au><au>Boll, Jan</au><au>McDaniel, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>2007-01-02</date><risdate>2007</risdate><volume>21</volume><issue>1</issue><spage>110</spage><epage>122</epage><pages>110-122</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>Verification of distributed hydrologic models is rare owing to the lack of spatially detailed field measurements and a common mismatch between the scale at which soil hydraulic properties are measured and the scale of a single modelling unit. In this study, two of the most commonly calibrated parameters, i.e. soil depth and the vertical distribution of lateral saturated hydraulic conductivity Ks, were eliminated by a spatially detailed soil characterization and results of a hillslope‐scale field experiment. The soil moisture routing (SMR) model, a geographic information system‐based hydrologic model, was modified to represent the dominant hydrologic processes for the Palouse region of northern Idaho. Modifications included Ks as a double exponential function of depth in a single soil layer, a snow accumulation and melt algorithm, and a simple relationship between storage and perched water depth (PWD) using the drainable porosity. The model was applied to a 2 ha catchment without calibration to measured data. Distributed responses were compared with observed PWD over a 3‐year period on a 10 m × 15 m grid. Integrated responses were compared with observed surface runoff at the catchment outlet. The modified SMR model simulated the PWD fluctuations remarkably well, especially considering the shallow soils in this catchment: a 0·20 m error in PWD is equivalent to only a 1·6% error in predicted soil moisture content. Simulations also captured PWD fluctuations during a year with high spatial variability of snow accumulation and snowmelt rates at upslope, mid‐slope, and toe slope positions with errors as low as 0·09 m, 0·12 m, and 0·12 m respectively. Errors in distributed and integrated model simulations were attributed mostly to misrepresentation of rain events and snowmelt timing problems. In one location in the catchment, simulated PWD was consistently greater than observed PWD, indicating a localized recharge zone, which was not identified by the soil morphological survey. Copyright © 2006 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/hyp.6230</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6087 |
ispartof | Hydrological processes, 2007-01, Vol.21 (1), p.110-122 |
issn | 0885-6087 1099-1085 |
language | eng |
recordid | cdi_proquest_miscellaneous_29209429 |
source | Wiley Blackwell Single Titles |
subjects | fragipans GIS Palouse perched water tables saturated hydraulic conductivity SMR model snowmelt variable source area runoff |
title | Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20and%20integrated%20response%20of%20a%20geographic%20information%20system-based%20hydrologic%20model%20in%20the%20eastern%20Palouse%20region,%20Idaho&rft.jtitle=Hydrological%20processes&rft.au=Brooks,%20Erin%20S.&rft.date=2007-01-02&rft.volume=21&rft.issue=1&rft.spage=110&rft.epage=122&rft.pages=110-122&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.6230&rft_dat=%3Cproquest_cross%3E20998151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20998151&rft_id=info:pmid/&rfr_iscdi=true |