Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel
The depth dependence of elemental composition, phase distribution, and cross-sectional morphology of rf plasma nitrocarburized 304 austenitic stainless steel were investigated using glow discharge optical spectroscopy (GDOS), grazing incidence X-ray diffraction (GIXRD), and optical microscopy, respe...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2005-02, Vol.191 (1), p.140-147 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 140 |
container_title | Surface & coatings technology |
container_volume | 191 |
creator | Abd El-Rahman, A.M. Negm, N.Z. Prokert, F. El-Hossary, F.M. Richter, E. Möller, W. |
description | The depth dependence of elemental composition, phase distribution, and cross-sectional morphology of rf plasma nitrocarburized 304 austenitic stainless steel were investigated using glow discharge optical spectroscopy (GDOS), grazing incidence X-ray diffraction (GIXRD), and optical microscopy, respectively. A step-wise mechanical polishing method was used to remove successive sublayers of the treated surface. It was found that the properties of the nitrocarburized layer depend critically on the plasma gas composition, which controls the supersaturation of nitrogen and carbon through the compound layer depth. Iron nitride phases and/or nitrogen-expanded austenite (
γ
N) were detected in the nitrocarburized layer prepared at high plasma nitrogen (N
2) content. In the compound layer processed at high plasma carbon (C
2H
2) content, besides the carbon-expanded austenite phase (
γ
C), carbide phases were found predominantly in the top-layer, in which the carbon concentration has a maximum value of ∼2 wt.%. The lattice expansion of the expanded austenite phases changes with sampling depth, depending on local variations in nitrogen and carbon content. The applied rf plasma processing power influences significantly nitrogen and carbon distribution in the treated sublayers. |
doi_str_mv | 10.1016/j.surfcoat.2004.03.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29209018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897204003123</els_id><sourcerecordid>29209018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-1d84c8659d7c15611b7042a3f61d8809702a85072dd48837c85fca96800df4183</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhkVoINukf6H40t7sjmR93lLy1UKgl_QsFHlEtXjtjUYONL--Xjahx_Y0w8wz88LD2EcOHQeuv2w7WkqKc6idAJAd9B2o_oRtuDWu7Xtp3rENCGVa64w4Y--JtgDAjZMb9nCN-_qrLTiGikOzy7HMVMsS61KwmVNTUrMfA-1CM-Va5hjK41Lyy8qGhSquwxwbqiFPIxKtHeJ4wU5TGAk_vNZz9vP25uHqW3v_4-771df7NkqQteWDldFq5QYTudKcPxqQIvRJrxsLzoAIVoERwyCt7U20KsXgtAUYkuS2P2efj3_3ZX5akKrfZYo4jmHCeSEvnAAH_wNaqa1yYgX1ETxooILJ70vehfLbc_AH237r32z7g20PvV9tr4efXhMCxTCmEqaY6e-1VlZpOHCXRw5XL88Zi6eYcYo45IKx-mHO_4r6A8XBmaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28468592</pqid></control><display><type>article</type><title>Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel</title><source>Elsevier ScienceDirect Journals</source><creator>Abd El-Rahman, A.M. ; Negm, N.Z. ; Prokert, F. ; El-Hossary, F.M. ; Richter, E. ; Möller, W.</creator><creatorcontrib>Abd El-Rahman, A.M. ; Negm, N.Z. ; Prokert, F. ; El-Hossary, F.M. ; Richter, E. ; Möller, W.</creatorcontrib><description>The depth dependence of elemental composition, phase distribution, and cross-sectional morphology of rf plasma nitrocarburized 304 austenitic stainless steel were investigated using glow discharge optical spectroscopy (GDOS), grazing incidence X-ray diffraction (GIXRD), and optical microscopy, respectively. A step-wise mechanical polishing method was used to remove successive sublayers of the treated surface. It was found that the properties of the nitrocarburized layer depend critically on the plasma gas composition, which controls the supersaturation of nitrogen and carbon through the compound layer depth. Iron nitride phases and/or nitrogen-expanded austenite (
γ
N) were detected in the nitrocarburized layer prepared at high plasma nitrogen (N
2) content. In the compound layer processed at high plasma carbon (C
2H
2) content, besides the carbon-expanded austenite phase (
γ
C), carbide phases were found predominantly in the top-layer, in which the carbon concentration has a maximum value of ∼2 wt.%. The lattice expansion of the expanded austenite phases changes with sampling depth, depending on local variations in nitrogen and carbon content. The applied rf plasma processing power influences significantly nitrogen and carbon distribution in the treated sublayers.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2004.03.053</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>304 austenitic stainless steel ; Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Depth microstructure ; Exact sciences and technology ; GDOS ; Heat treatment ; Materials science ; Metals. Metallurgy ; Nitrocarburizing ; Other topics in materials science ; Physics ; Production techniques ; Thermochemical treatment and diffusion treatment</subject><ispartof>Surface & coatings technology, 2005-02, Vol.191 (1), p.140-147</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-1d84c8659d7c15611b7042a3f61d8809702a85072dd48837c85fca96800df4183</citedby><cites>FETCH-LOGICAL-c404t-1d84c8659d7c15611b7042a3f61d8809702a85072dd48837c85fca96800df4183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897204003123$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16585603$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abd El-Rahman, A.M.</creatorcontrib><creatorcontrib>Negm, N.Z.</creatorcontrib><creatorcontrib>Prokert, F.</creatorcontrib><creatorcontrib>El-Hossary, F.M.</creatorcontrib><creatorcontrib>Richter, E.</creatorcontrib><creatorcontrib>Möller, W.</creatorcontrib><title>Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel</title><title>Surface & coatings technology</title><description>The depth dependence of elemental composition, phase distribution, and cross-sectional morphology of rf plasma nitrocarburized 304 austenitic stainless steel were investigated using glow discharge optical spectroscopy (GDOS), grazing incidence X-ray diffraction (GIXRD), and optical microscopy, respectively. A step-wise mechanical polishing method was used to remove successive sublayers of the treated surface. It was found that the properties of the nitrocarburized layer depend critically on the plasma gas composition, which controls the supersaturation of nitrogen and carbon through the compound layer depth. Iron nitride phases and/or nitrogen-expanded austenite (
γ
N) were detected in the nitrocarburized layer prepared at high plasma nitrogen (N
2) content. In the compound layer processed at high plasma carbon (C
2H
2) content, besides the carbon-expanded austenite phase (
γ
C), carbide phases were found predominantly in the top-layer, in which the carbon concentration has a maximum value of ∼2 wt.%. The lattice expansion of the expanded austenite phases changes with sampling depth, depending on local variations in nitrogen and carbon content. The applied rf plasma processing power influences significantly nitrogen and carbon distribution in the treated sublayers.</description><subject>304 austenitic stainless steel</subject><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Depth microstructure</subject><subject>Exact sciences and technology</subject><subject>GDOS</subject><subject>Heat treatment</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Nitrocarburizing</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Thermochemical treatment and diffusion treatment</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAQhkVoINukf6H40t7sjmR93lLy1UKgl_QsFHlEtXjtjUYONL--Xjahx_Y0w8wz88LD2EcOHQeuv2w7WkqKc6idAJAd9B2o_oRtuDWu7Xtp3rENCGVa64w4Y--JtgDAjZMb9nCN-_qrLTiGikOzy7HMVMsS61KwmVNTUrMfA-1CM-Va5hjK41Lyy8qGhSquwxwbqiFPIxKtHeJ4wU5TGAk_vNZz9vP25uHqW3v_4-771df7NkqQteWDldFq5QYTudKcPxqQIvRJrxsLzoAIVoERwyCt7U20KsXgtAUYkuS2P2efj3_3ZX5akKrfZYo4jmHCeSEvnAAH_wNaqa1yYgX1ETxooILJ70vehfLbc_AH237r32z7g20PvV9tr4efXhMCxTCmEqaY6e-1VlZpOHCXRw5XL88Zi6eYcYo45IKx-mHO_4r6A8XBmaQ</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Abd El-Rahman, A.M.</creator><creator>Negm, N.Z.</creator><creator>Prokert, F.</creator><creator>El-Hossary, F.M.</creator><creator>Richter, E.</creator><creator>Möller, W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20050201</creationdate><title>Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel</title><author>Abd El-Rahman, A.M. ; Negm, N.Z. ; Prokert, F. ; El-Hossary, F.M. ; Richter, E. ; Möller, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-1d84c8659d7c15611b7042a3f61d8809702a85072dd48837c85fca96800df4183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>304 austenitic stainless steel</topic><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Depth microstructure</topic><topic>Exact sciences and technology</topic><topic>GDOS</topic><topic>Heat treatment</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Nitrocarburizing</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Thermochemical treatment and diffusion treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abd El-Rahman, A.M.</creatorcontrib><creatorcontrib>Negm, N.Z.</creatorcontrib><creatorcontrib>Prokert, F.</creatorcontrib><creatorcontrib>El-Hossary, F.M.</creatorcontrib><creatorcontrib>Richter, E.</creatorcontrib><creatorcontrib>Möller, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abd El-Rahman, A.M.</au><au>Negm, N.Z.</au><au>Prokert, F.</au><au>El-Hossary, F.M.</au><au>Richter, E.</au><au>Möller, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel</atitle><jtitle>Surface & coatings technology</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>191</volume><issue>1</issue><spage>140</spage><epage>147</epage><pages>140-147</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>The depth dependence of elemental composition, phase distribution, and cross-sectional morphology of rf plasma nitrocarburized 304 austenitic stainless steel were investigated using glow discharge optical spectroscopy (GDOS), grazing incidence X-ray diffraction (GIXRD), and optical microscopy, respectively. A step-wise mechanical polishing method was used to remove successive sublayers of the treated surface. It was found that the properties of the nitrocarburized layer depend critically on the plasma gas composition, which controls the supersaturation of nitrogen and carbon through the compound layer depth. Iron nitride phases and/or nitrogen-expanded austenite (
γ
N) were detected in the nitrocarburized layer prepared at high plasma nitrogen (N
2) content. In the compound layer processed at high plasma carbon (C
2H
2) content, besides the carbon-expanded austenite phase (
γ
C), carbide phases were found predominantly in the top-layer, in which the carbon concentration has a maximum value of ∼2 wt.%. The lattice expansion of the expanded austenite phases changes with sampling depth, depending on local variations in nitrogen and carbon content. The applied rf plasma processing power influences significantly nitrogen and carbon distribution in the treated sublayers.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2004.03.053</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2005-02, Vol.191 (1), p.140-147 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_miscellaneous_29209018 |
source | Elsevier ScienceDirect Journals |
subjects | 304 austenitic stainless steel Applied sciences Cross-disciplinary physics: materials science rheology Depth microstructure Exact sciences and technology GDOS Heat treatment Materials science Metals. Metallurgy Nitrocarburizing Other topics in materials science Physics Production techniques Thermochemical treatment and diffusion treatment |
title | Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth-related%20microstructure%20of%20rf%20plasma%20nitrocarburized%20austenitic%20stainless%20steel&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Abd%20El-Rahman,%20A.M.&rft.date=2005-02-01&rft.volume=191&rft.issue=1&rft.spage=140&rft.epage=147&rft.pages=140-147&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2004.03.053&rft_dat=%3Cproquest_cross%3E29209018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28468592&rft_id=info:pmid/&rft_els_id=S0257897204003123&rfr_iscdi=true |