Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel

The depth dependence of elemental composition, phase distribution, and cross-sectional morphology of rf plasma nitrocarburized 304 austenitic stainless steel were investigated using glow discharge optical spectroscopy (GDOS), grazing incidence X-ray diffraction (GIXRD), and optical microscopy, respe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2005-02, Vol.191 (1), p.140-147
Hauptverfasser: Abd El-Rahman, A.M., Negm, N.Z., Prokert, F., El-Hossary, F.M., Richter, E., Möller, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 140
container_title Surface & coatings technology
container_volume 191
creator Abd El-Rahman, A.M.
Negm, N.Z.
Prokert, F.
El-Hossary, F.M.
Richter, E.
Möller, W.
description The depth dependence of elemental composition, phase distribution, and cross-sectional morphology of rf plasma nitrocarburized 304 austenitic stainless steel were investigated using glow discharge optical spectroscopy (GDOS), grazing incidence X-ray diffraction (GIXRD), and optical microscopy, respectively. A step-wise mechanical polishing method was used to remove successive sublayers of the treated surface. It was found that the properties of the nitrocarburized layer depend critically on the plasma gas composition, which controls the supersaturation of nitrogen and carbon through the compound layer depth. Iron nitride phases and/or nitrogen-expanded austenite ( γ N) were detected in the nitrocarburized layer prepared at high plasma nitrogen (N 2) content. In the compound layer processed at high plasma carbon (C 2H 2) content, besides the carbon-expanded austenite phase ( γ C), carbide phases were found predominantly in the top-layer, in which the carbon concentration has a maximum value of ∼2 wt.%. The lattice expansion of the expanded austenite phases changes with sampling depth, depending on local variations in nitrogen and carbon content. The applied rf plasma processing power influences significantly nitrogen and carbon distribution in the treated sublayers.
doi_str_mv 10.1016/j.surfcoat.2004.03.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29209018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897204003123</els_id><sourcerecordid>29209018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-1d84c8659d7c15611b7042a3f61d8809702a85072dd48837c85fca96800df4183</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhkVoINukf6H40t7sjmR93lLy1UKgl_QsFHlEtXjtjUYONL--Xjahx_Y0w8wz88LD2EcOHQeuv2w7WkqKc6idAJAd9B2o_oRtuDWu7Xtp3rENCGVa64w4Y--JtgDAjZMb9nCN-_qrLTiGikOzy7HMVMsS61KwmVNTUrMfA-1CM-Va5hjK41Lyy8qGhSquwxwbqiFPIxKtHeJ4wU5TGAk_vNZz9vP25uHqW3v_4-771df7NkqQteWDldFq5QYTudKcPxqQIvRJrxsLzoAIVoERwyCt7U20KsXgtAUYkuS2P2efj3_3ZX5akKrfZYo4jmHCeSEvnAAH_wNaqa1yYgX1ETxooILJ70vehfLbc_AH237r32z7g20PvV9tr4efXhMCxTCmEqaY6e-1VlZpOHCXRw5XL88Zi6eYcYo45IKx-mHO_4r6A8XBmaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28468592</pqid></control><display><type>article</type><title>Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel</title><source>Elsevier ScienceDirect Journals</source><creator>Abd El-Rahman, A.M. ; Negm, N.Z. ; Prokert, F. ; El-Hossary, F.M. ; Richter, E. ; Möller, W.</creator><creatorcontrib>Abd El-Rahman, A.M. ; Negm, N.Z. ; Prokert, F. ; El-Hossary, F.M. ; Richter, E. ; Möller, W.</creatorcontrib><description>The depth dependence of elemental composition, phase distribution, and cross-sectional morphology of rf plasma nitrocarburized 304 austenitic stainless steel were investigated using glow discharge optical spectroscopy (GDOS), grazing incidence X-ray diffraction (GIXRD), and optical microscopy, respectively. A step-wise mechanical polishing method was used to remove successive sublayers of the treated surface. It was found that the properties of the nitrocarburized layer depend critically on the plasma gas composition, which controls the supersaturation of nitrogen and carbon through the compound layer depth. Iron nitride phases and/or nitrogen-expanded austenite ( γ N) were detected in the nitrocarburized layer prepared at high plasma nitrogen (N 2) content. In the compound layer processed at high plasma carbon (C 2H 2) content, besides the carbon-expanded austenite phase ( γ C), carbide phases were found predominantly in the top-layer, in which the carbon concentration has a maximum value of ∼2 wt.%. The lattice expansion of the expanded austenite phases changes with sampling depth, depending on local variations in nitrogen and carbon content. The applied rf plasma processing power influences significantly nitrogen and carbon distribution in the treated sublayers.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2004.03.053</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>304 austenitic stainless steel ; Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Depth microstructure ; Exact sciences and technology ; GDOS ; Heat treatment ; Materials science ; Metals. Metallurgy ; Nitrocarburizing ; Other topics in materials science ; Physics ; Production techniques ; Thermochemical treatment and diffusion treatment</subject><ispartof>Surface &amp; coatings technology, 2005-02, Vol.191 (1), p.140-147</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-1d84c8659d7c15611b7042a3f61d8809702a85072dd48837c85fca96800df4183</citedby><cites>FETCH-LOGICAL-c404t-1d84c8659d7c15611b7042a3f61d8809702a85072dd48837c85fca96800df4183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897204003123$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16585603$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abd El-Rahman, A.M.</creatorcontrib><creatorcontrib>Negm, N.Z.</creatorcontrib><creatorcontrib>Prokert, F.</creatorcontrib><creatorcontrib>El-Hossary, F.M.</creatorcontrib><creatorcontrib>Richter, E.</creatorcontrib><creatorcontrib>Möller, W.</creatorcontrib><title>Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel</title><title>Surface &amp; coatings technology</title><description>The depth dependence of elemental composition, phase distribution, and cross-sectional morphology of rf plasma nitrocarburized 304 austenitic stainless steel were investigated using glow discharge optical spectroscopy (GDOS), grazing incidence X-ray diffraction (GIXRD), and optical microscopy, respectively. A step-wise mechanical polishing method was used to remove successive sublayers of the treated surface. It was found that the properties of the nitrocarburized layer depend critically on the plasma gas composition, which controls the supersaturation of nitrogen and carbon through the compound layer depth. Iron nitride phases and/or nitrogen-expanded austenite ( γ N) were detected in the nitrocarburized layer prepared at high plasma nitrogen (N 2) content. In the compound layer processed at high plasma carbon (C 2H 2) content, besides the carbon-expanded austenite phase ( γ C), carbide phases were found predominantly in the top-layer, in which the carbon concentration has a maximum value of ∼2 wt.%. The lattice expansion of the expanded austenite phases changes with sampling depth, depending on local variations in nitrogen and carbon content. The applied rf plasma processing power influences significantly nitrogen and carbon distribution in the treated sublayers.</description><subject>304 austenitic stainless steel</subject><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Depth microstructure</subject><subject>Exact sciences and technology</subject><subject>GDOS</subject><subject>Heat treatment</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Nitrocarburizing</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Thermochemical treatment and diffusion treatment</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAQhkVoINukf6H40t7sjmR93lLy1UKgl_QsFHlEtXjtjUYONL--Xjahx_Y0w8wz88LD2EcOHQeuv2w7WkqKc6idAJAd9B2o_oRtuDWu7Xtp3rENCGVa64w4Y--JtgDAjZMb9nCN-_qrLTiGikOzy7HMVMsS61KwmVNTUrMfA-1CM-Va5hjK41Lyy8qGhSquwxwbqiFPIxKtHeJ4wU5TGAk_vNZz9vP25uHqW3v_4-771df7NkqQteWDldFq5QYTudKcPxqQIvRJrxsLzoAIVoERwyCt7U20KsXgtAUYkuS2P2efj3_3ZX5akKrfZYo4jmHCeSEvnAAH_wNaqa1yYgX1ETxooILJ70vehfLbc_AH237r32z7g20PvV9tr4efXhMCxTCmEqaY6e-1VlZpOHCXRw5XL88Zi6eYcYo45IKx-mHO_4r6A8XBmaQ</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Abd El-Rahman, A.M.</creator><creator>Negm, N.Z.</creator><creator>Prokert, F.</creator><creator>El-Hossary, F.M.</creator><creator>Richter, E.</creator><creator>Möller, W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20050201</creationdate><title>Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel</title><author>Abd El-Rahman, A.M. ; Negm, N.Z. ; Prokert, F. ; El-Hossary, F.M. ; Richter, E. ; Möller, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-1d84c8659d7c15611b7042a3f61d8809702a85072dd48837c85fca96800df4183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>304 austenitic stainless steel</topic><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Depth microstructure</topic><topic>Exact sciences and technology</topic><topic>GDOS</topic><topic>Heat treatment</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Nitrocarburizing</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Thermochemical treatment and diffusion treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abd El-Rahman, A.M.</creatorcontrib><creatorcontrib>Negm, N.Z.</creatorcontrib><creatorcontrib>Prokert, F.</creatorcontrib><creatorcontrib>El-Hossary, F.M.</creatorcontrib><creatorcontrib>Richter, E.</creatorcontrib><creatorcontrib>Möller, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abd El-Rahman, A.M.</au><au>Negm, N.Z.</au><au>Prokert, F.</au><au>El-Hossary, F.M.</au><au>Richter, E.</au><au>Möller, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>191</volume><issue>1</issue><spage>140</spage><epage>147</epage><pages>140-147</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>The depth dependence of elemental composition, phase distribution, and cross-sectional morphology of rf plasma nitrocarburized 304 austenitic stainless steel were investigated using glow discharge optical spectroscopy (GDOS), grazing incidence X-ray diffraction (GIXRD), and optical microscopy, respectively. A step-wise mechanical polishing method was used to remove successive sublayers of the treated surface. It was found that the properties of the nitrocarburized layer depend critically on the plasma gas composition, which controls the supersaturation of nitrogen and carbon through the compound layer depth. Iron nitride phases and/or nitrogen-expanded austenite ( γ N) were detected in the nitrocarburized layer prepared at high plasma nitrogen (N 2) content. In the compound layer processed at high plasma carbon (C 2H 2) content, besides the carbon-expanded austenite phase ( γ C), carbide phases were found predominantly in the top-layer, in which the carbon concentration has a maximum value of ∼2 wt.%. The lattice expansion of the expanded austenite phases changes with sampling depth, depending on local variations in nitrogen and carbon content. The applied rf plasma processing power influences significantly nitrogen and carbon distribution in the treated sublayers.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2004.03.053</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2005-02, Vol.191 (1), p.140-147
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_29209018
source Elsevier ScienceDirect Journals
subjects 304 austenitic stainless steel
Applied sciences
Cross-disciplinary physics: materials science
rheology
Depth microstructure
Exact sciences and technology
GDOS
Heat treatment
Materials science
Metals. Metallurgy
Nitrocarburizing
Other topics in materials science
Physics
Production techniques
Thermochemical treatment and diffusion treatment
title Depth-related microstructure of rf plasma nitrocarburized austenitic stainless steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth-related%20microstructure%20of%20rf%20plasma%20nitrocarburized%20austenitic%20stainless%20steel&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Abd%20El-Rahman,%20A.M.&rft.date=2005-02-01&rft.volume=191&rft.issue=1&rft.spage=140&rft.epage=147&rft.pages=140-147&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2004.03.053&rft_dat=%3Cproquest_cross%3E29209018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28468592&rft_id=info:pmid/&rft_els_id=S0257897204003123&rfr_iscdi=true