Design and characterization of a cylindrical, water-cooled heat sink for thermoelectric air-conditioners
Thermoelectric air‐conditioners (TEACs) are becoming much concerned due to their many advantages, but the low COPs limit their broad applications. The two key factors to raise the COPs of TEACs are both the improvement of thermoelectric materials and the optimum design of hot side heat sinks. This p...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2006-02, Vol.30 (2), p.67-80 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 2 |
container_start_page | 67 |
container_title | International journal of energy research |
container_volume | 30 |
creator | Riffat, S. B. Qiu, G. Q. |
description | Thermoelectric air‐conditioners (TEACs) are becoming much concerned due to their many advantages, but the low COPs limit their broad applications. The two key factors to raise the COPs of TEACs are both the improvement of thermoelectric materials and the optimum design of hot side heat sinks. This paper provides a thermoelectric air‐conditioning system with a water‐cooled sleeve heat sink in the hot side of the thermoelectric pellets, and compares the overall heat transfer rates qt, the total heat resistances Rt between the water‐cooled and air‐cooled heat sinks as well as the optimum fin length, the optimum fluid flow velocity and the optimum fin gap distance. The simulation results show that the overall heat transfer rate of water‐cooled heat sink is more than 20 times that of air‐cooled heat sink under the other same circumstances, as a result of the improvement of heat sink, the optimum COP of the thermoelectric air‐conditioning system with the water‐cooled heat sink proximately doubles that with the air‐cooled heat sink. This novel system could be simply installed and applied all the year round for cooling in summer and heating in winter. Copyright © 2005 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/er.1124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29208728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29208728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4904-b79755d23ed080bf8524a98324b2b13030b099763b4eadbec1db4c9bed9ee1503</originalsourceid><addsrcrecordid>eNqF0M1PFDEYx_GGaOKKxn-hF_WAA09fZjo9mgXRSCAxELg1fXmGrcxOoR0Cy1_PbHajJ8Kph-eTb5ofIZ8Y7DMAfoB5nzEud8iMgdYVY_LqDZmBaESlQV29I-9L-Qsw3ZiakcUhlng9UDsE6hc2Wz9ijk92jGmgqaOW-lUfh5Cjt_03-mCnc-VT6jHQBdqRljjc0C5lOi4wLxP26McJUxvXbghxXcJcPpC3ne0Lfty-u-Tix9H5_Gd1cnb8a_79pPJSg6yc0qquAxcYoAXXtTWXVreCS8cdEyDATT9XjXASbXDoWXDSa4dBI7IaxC75sune5nR3j2U0y1g89r0dMN0XwzWHVvH2Vcikalgtmwl-3UCfUykZO3Ob49LmlWFg1pMbzGY9-SQ_b5O2THN12Q4-lv9cSc6aVk1ub-MeYo-rl3Lm6M-2Wm10LCM-_tM235hGCVWby9Njo-enqoXfl-ZQPAOWaZ5K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14761546</pqid></control><display><type>article</type><title>Design and characterization of a cylindrical, water-cooled heat sink for thermoelectric air-conditioners</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Riffat, S. B. ; Qiu, G. Q.</creator><creatorcontrib>Riffat, S. B. ; Qiu, G. Q.</creatorcontrib><description>Thermoelectric air‐conditioners (TEACs) are becoming much concerned due to their many advantages, but the low COPs limit their broad applications. The two key factors to raise the COPs of TEACs are both the improvement of thermoelectric materials and the optimum design of hot side heat sinks. This paper provides a thermoelectric air‐conditioning system with a water‐cooled sleeve heat sink in the hot side of the thermoelectric pellets, and compares the overall heat transfer rates qt, the total heat resistances Rt between the water‐cooled and air‐cooled heat sinks as well as the optimum fin length, the optimum fluid flow velocity and the optimum fin gap distance. The simulation results show that the overall heat transfer rate of water‐cooled heat sink is more than 20 times that of air‐cooled heat sink under the other same circumstances, as a result of the improvement of heat sink, the optimum COP of the thermoelectric air‐conditioning system with the water‐cooled heat sink proximately doubles that with the air‐cooled heat sink. This novel system could be simply installed and applied all the year round for cooling in summer and heating in winter. Copyright © 2005 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.1124</identifier><identifier>CODEN: IJERDN</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Air conditioning. Ventilation ; Applied sciences ; COP ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; heat sink ; Heating, air conditioning and ventilation ; overall heat transfer rate ; overall thermal resistance ; Techniques, equipment. Control. Metering ; thermoelectric air-conditioner (TEACs) ; water-cooled</subject><ispartof>International journal of energy research, 2006-02, Vol.30 (2), p.67-80</ispartof><rights>Copyright © 2005 John Wiley & Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4904-b79755d23ed080bf8524a98324b2b13030b099763b4eadbec1db4c9bed9ee1503</citedby><cites>FETCH-LOGICAL-c4904-b79755d23ed080bf8524a98324b2b13030b099763b4eadbec1db4c9bed9ee1503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.1124$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.1124$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17421687$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Riffat, S. B.</creatorcontrib><creatorcontrib>Qiu, G. Q.</creatorcontrib><title>Design and characterization of a cylindrical, water-cooled heat sink for thermoelectric air-conditioners</title><title>International journal of energy research</title><addtitle>Int. J. Energy Res</addtitle><description>Thermoelectric air‐conditioners (TEACs) are becoming much concerned due to their many advantages, but the low COPs limit their broad applications. The two key factors to raise the COPs of TEACs are both the improvement of thermoelectric materials and the optimum design of hot side heat sinks. This paper provides a thermoelectric air‐conditioning system with a water‐cooled sleeve heat sink in the hot side of the thermoelectric pellets, and compares the overall heat transfer rates qt, the total heat resistances Rt between the water‐cooled and air‐cooled heat sinks as well as the optimum fin length, the optimum fluid flow velocity and the optimum fin gap distance. The simulation results show that the overall heat transfer rate of water‐cooled heat sink is more than 20 times that of air‐cooled heat sink under the other same circumstances, as a result of the improvement of heat sink, the optimum COP of the thermoelectric air‐conditioning system with the water‐cooled heat sink proximately doubles that with the air‐cooled heat sink. This novel system could be simply installed and applied all the year round for cooling in summer and heating in winter. Copyright © 2005 John Wiley & Sons, Ltd.</description><subject>Air conditioning. Ventilation</subject><subject>Applied sciences</subject><subject>COP</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>heat sink</subject><subject>Heating, air conditioning and ventilation</subject><subject>overall heat transfer rate</subject><subject>overall thermal resistance</subject><subject>Techniques, equipment. Control. Metering</subject><subject>thermoelectric air-conditioner (TEACs)</subject><subject>water-cooled</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0M1PFDEYx_GGaOKKxn-hF_WAA09fZjo9mgXRSCAxELg1fXmGrcxOoR0Cy1_PbHajJ8Kph-eTb5ofIZ8Y7DMAfoB5nzEud8iMgdYVY_LqDZmBaESlQV29I-9L-Qsw3ZiakcUhlng9UDsE6hc2Wz9ijk92jGmgqaOW-lUfh5Cjt_03-mCnc-VT6jHQBdqRljjc0C5lOi4wLxP26McJUxvXbghxXcJcPpC3ne0Lfty-u-Tix9H5_Gd1cnb8a_79pPJSg6yc0qquAxcYoAXXtTWXVreCS8cdEyDATT9XjXASbXDoWXDSa4dBI7IaxC75sune5nR3j2U0y1g89r0dMN0XwzWHVvH2Vcikalgtmwl-3UCfUykZO3Ob49LmlWFg1pMbzGY9-SQ_b5O2THN12Q4-lv9cSc6aVk1ub-MeYo-rl3Lm6M-2Wm10LCM-_tM235hGCVWby9Njo-enqoXfl-ZQPAOWaZ5K</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Riffat, S. B.</creator><creator>Qiu, G. Q.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>200602</creationdate><title>Design and characterization of a cylindrical, water-cooled heat sink for thermoelectric air-conditioners</title><author>Riffat, S. B. ; Qiu, G. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4904-b79755d23ed080bf8524a98324b2b13030b099763b4eadbec1db4c9bed9ee1503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Air conditioning. Ventilation</topic><topic>Applied sciences</topic><topic>COP</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>heat sink</topic><topic>Heating, air conditioning and ventilation</topic><topic>overall heat transfer rate</topic><topic>overall thermal resistance</topic><topic>Techniques, equipment. Control. Metering</topic><topic>thermoelectric air-conditioner (TEACs)</topic><topic>water-cooled</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riffat, S. B.</creatorcontrib><creatorcontrib>Qiu, G. Q.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riffat, S. B.</au><au>Qiu, G. Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and characterization of a cylindrical, water-cooled heat sink for thermoelectric air-conditioners</atitle><jtitle>International journal of energy research</jtitle><addtitle>Int. J. Energy Res</addtitle><date>2006-02</date><risdate>2006</risdate><volume>30</volume><issue>2</issue><spage>67</spage><epage>80</epage><pages>67-80</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><coden>IJERDN</coden><abstract>Thermoelectric air‐conditioners (TEACs) are becoming much concerned due to their many advantages, but the low COPs limit their broad applications. The two key factors to raise the COPs of TEACs are both the improvement of thermoelectric materials and the optimum design of hot side heat sinks. This paper provides a thermoelectric air‐conditioning system with a water‐cooled sleeve heat sink in the hot side of the thermoelectric pellets, and compares the overall heat transfer rates qt, the total heat resistances Rt between the water‐cooled and air‐cooled heat sinks as well as the optimum fin length, the optimum fluid flow velocity and the optimum fin gap distance. The simulation results show that the overall heat transfer rate of water‐cooled heat sink is more than 20 times that of air‐cooled heat sink under the other same circumstances, as a result of the improvement of heat sink, the optimum COP of the thermoelectric air‐conditioning system with the water‐cooled heat sink proximately doubles that with the air‐cooled heat sink. This novel system could be simply installed and applied all the year round for cooling in summer and heating in winter. Copyright © 2005 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/er.1124</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2006-02, Vol.30 (2), p.67-80 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_miscellaneous_29208728 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Air conditioning. Ventilation Applied sciences COP Energy Energy. Thermal use of fuels Exact sciences and technology heat sink Heating, air conditioning and ventilation overall heat transfer rate overall thermal resistance Techniques, equipment. Control. Metering thermoelectric air-conditioner (TEACs) water-cooled |
title | Design and characterization of a cylindrical, water-cooled heat sink for thermoelectric air-conditioners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20characterization%20of%20a%20cylindrical,%20water-cooled%20heat%20sink%20for%20thermoelectric%20air-conditioners&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Riffat,%20S.%20B.&rft.date=2006-02&rft.volume=30&rft.issue=2&rft.spage=67&rft.epage=80&rft.pages=67-80&rft.issn=0363-907X&rft.eissn=1099-114X&rft.coden=IJERDN&rft_id=info:doi/10.1002/er.1124&rft_dat=%3Cproquest_cross%3E29208728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14761546&rft_id=info:pmid/&rfr_iscdi=true |