Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor
In this paper, we present computations linking the tritium release rate to the characteristics of lithium–lead and helium cooling circuits. Impacting component performances are evaluated such as tritium permeation towards the He coolant in the blanket modules, lithium–lead circulation rate, tritium...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2006-02, Vol.81 (1), p.753-762 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 762 |
---|---|
container_issue | 1 |
container_start_page | 753 |
container_title | Fusion engineering and design |
container_volume | 81 |
creator | Farabolini, W. Ciampichetti, A. Dabbene, F. Fütterer, M.A. Giancarli, L. Laffont, G. Puma, A. Li Raboin, S. Poitevin, Y. Ricapito, I. Sardain, P. |
description | In this paper, we present computations linking the tritium release rate to the characteristics of lithium–lead and helium cooling circuits. Impacting component performances are evaluated such as tritium permeation towards the He coolant in the blanket modules, lithium–lead circulation rate, tritium extraction unit efficiency, tritium permeation in steam generator, helium coolant leak rate, helium purification unit maximum flow rate and efficiency. Safety considerations are also taken into account.
A finite element model (FEM) for tritium permeation was developed considering various phenomena such as tritium transport by convection and diffusion in lithium–lead, MHD effects on liquid metal flows, tritium permeation in structures with temperature gradients.
Other sub-system performances, like He leak rate and efficiency of tritium extraction systems, are discussed via an engineering approach.
The results show that a reasonable compromise among the various requirements can be found, leading to technologically achievable requirements for tritium permeation barriers, tritium extraction systems both from Pb–17Li and He, and leak rates from the He cooling system. |
doi_str_mv | 10.1016/j.fusengdes.2005.07.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29206798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092037960500582X</els_id><sourcerecordid>29206798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-5ec528c3e4b1ea79f55504245aef54fc9db49fbeb271fe4314a87ae7c28f53383</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI34AvcEuzYjpNjhXhJSFzgiuU4a-rixsVOQdz4B_6QL8FVERyRdrVa7ezOziB0TElJCa3PFqVdJxieekhlRYgoiSwJbXbQhDaSFZK29S6akLYiBZNtvY8OUloQQmWOCXq8j2506yU2YRhj8HgZevDeDU_Yhog1noPfjoOHHns3znP79fHpQfe483p4hhEHm5H5DRcGvApvEHEEbcYQD9Ge1T7B0U-doofLi_vz6-L27urmfHZbGCbrsRBgRNUYBryjoGVrhRCEV1xosIJb0_Ydb20HXSWpBc4o143UIE3VWMFYw6bodHt3FcPLGtKoli6ZLEQPENZJVVl-LdsNUG6BJoaUIli1im6p47uiRG38VAv166fa-KmIVNnPvHnyQ6GT0d5GPRiX_tal4IznnKLZFgdZ76uDqJJxMBjoXQQzqj64f7m-AdY_krU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29206798</pqid></control><display><type>article</type><title>Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor</title><source>Elsevier ScienceDirect Journals</source><creator>Farabolini, W. ; Ciampichetti, A. ; Dabbene, F. ; Fütterer, M.A. ; Giancarli, L. ; Laffont, G. ; Puma, A. Li ; Raboin, S. ; Poitevin, Y. ; Ricapito, I. ; Sardain, P.</creator><creatorcontrib>Farabolini, W. ; Ciampichetti, A. ; Dabbene, F. ; Fütterer, M.A. ; Giancarli, L. ; Laffont, G. ; Puma, A. Li ; Raboin, S. ; Poitevin, Y. ; Ricapito, I. ; Sardain, P.</creatorcontrib><description>In this paper, we present computations linking the tritium release rate to the characteristics of lithium–lead and helium cooling circuits. Impacting component performances are evaluated such as tritium permeation towards the He coolant in the blanket modules, lithium–lead circulation rate, tritium extraction unit efficiency, tritium permeation in steam generator, helium coolant leak rate, helium purification unit maximum flow rate and efficiency. Safety considerations are also taken into account.
A finite element model (FEM) for tritium permeation was developed considering various phenomena such as tritium transport by convection and diffusion in lithium–lead, MHD effects on liquid metal flows, tritium permeation in structures with temperature gradients.
Other sub-system performances, like He leak rate and efficiency of tritium extraction systems, are discussed via an engineering approach.
The results show that a reasonable compromise among the various requirements can be found, leading to technologically achievable requirements for tritium permeation barriers, tritium extraction systems both from Pb–17Li and He, and leak rates from the He cooling system.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2005.07.018</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fusion blanket ; Installations for energy generation and conversion: thermal and electrical energy ; Lithium–lead ; Permeation ; Tritium</subject><ispartof>Fusion engineering and design, 2006-02, Vol.81 (1), p.753-762</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-5ec528c3e4b1ea79f55504245aef54fc9db49fbeb271fe4314a87ae7c28f53383</citedby><cites>FETCH-LOGICAL-c376t-5ec528c3e4b1ea79f55504245aef54fc9db49fbeb271fe4314a87ae7c28f53383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092037960500582X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17543454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Farabolini, W.</creatorcontrib><creatorcontrib>Ciampichetti, A.</creatorcontrib><creatorcontrib>Dabbene, F.</creatorcontrib><creatorcontrib>Fütterer, M.A.</creatorcontrib><creatorcontrib>Giancarli, L.</creatorcontrib><creatorcontrib>Laffont, G.</creatorcontrib><creatorcontrib>Puma, A. Li</creatorcontrib><creatorcontrib>Raboin, S.</creatorcontrib><creatorcontrib>Poitevin, Y.</creatorcontrib><creatorcontrib>Ricapito, I.</creatorcontrib><creatorcontrib>Sardain, P.</creatorcontrib><title>Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor</title><title>Fusion engineering and design</title><description>In this paper, we present computations linking the tritium release rate to the characteristics of lithium–lead and helium cooling circuits. Impacting component performances are evaluated such as tritium permeation towards the He coolant in the blanket modules, lithium–lead circulation rate, tritium extraction unit efficiency, tritium permeation in steam generator, helium coolant leak rate, helium purification unit maximum flow rate and efficiency. Safety considerations are also taken into account.
A finite element model (FEM) for tritium permeation was developed considering various phenomena such as tritium transport by convection and diffusion in lithium–lead, MHD effects on liquid metal flows, tritium permeation in structures with temperature gradients.
Other sub-system performances, like He leak rate and efficiency of tritium extraction systems, are discussed via an engineering approach.
The results show that a reasonable compromise among the various requirements can be found, leading to technologically achievable requirements for tritium permeation barriers, tritium extraction systems both from Pb–17Li and He, and leak rates from the He cooling system.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fusion blanket</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Lithium–lead</subject><subject>Permeation</subject><subject>Tritium</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI34AvcEuzYjpNjhXhJSFzgiuU4a-rixsVOQdz4B_6QL8FVERyRdrVa7ezOziB0TElJCa3PFqVdJxieekhlRYgoiSwJbXbQhDaSFZK29S6akLYiBZNtvY8OUloQQmWOCXq8j2506yU2YRhj8HgZevDeDU_Yhog1noPfjoOHHns3znP79fHpQfe483p4hhEHm5H5DRcGvApvEHEEbcYQD9Ge1T7B0U-doofLi_vz6-L27urmfHZbGCbrsRBgRNUYBryjoGVrhRCEV1xosIJb0_Ydb20HXSWpBc4o143UIE3VWMFYw6bodHt3FcPLGtKoli6ZLEQPENZJVVl-LdsNUG6BJoaUIli1im6p47uiRG38VAv166fa-KmIVNnPvHnyQ6GT0d5GPRiX_tal4IznnKLZFgdZ76uDqJJxMBjoXQQzqj64f7m-AdY_krU</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Farabolini, W.</creator><creator>Ciampichetti, A.</creator><creator>Dabbene, F.</creator><creator>Fütterer, M.A.</creator><creator>Giancarli, L.</creator><creator>Laffont, G.</creator><creator>Puma, A. Li</creator><creator>Raboin, S.</creator><creator>Poitevin, Y.</creator><creator>Ricapito, I.</creator><creator>Sardain, P.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060201</creationdate><title>Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor</title><author>Farabolini, W. ; Ciampichetti, A. ; Dabbene, F. ; Fütterer, M.A. ; Giancarli, L. ; Laffont, G. ; Puma, A. Li ; Raboin, S. ; Poitevin, Y. ; Ricapito, I. ; Sardain, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-5ec528c3e4b1ea79f55504245aef54fc9db49fbeb271fe4314a87ae7c28f53383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fusion blanket</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Lithium–lead</topic><topic>Permeation</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farabolini, W.</creatorcontrib><creatorcontrib>Ciampichetti, A.</creatorcontrib><creatorcontrib>Dabbene, F.</creatorcontrib><creatorcontrib>Fütterer, M.A.</creatorcontrib><creatorcontrib>Giancarli, L.</creatorcontrib><creatorcontrib>Laffont, G.</creatorcontrib><creatorcontrib>Puma, A. Li</creatorcontrib><creatorcontrib>Raboin, S.</creatorcontrib><creatorcontrib>Poitevin, Y.</creatorcontrib><creatorcontrib>Ricapito, I.</creatorcontrib><creatorcontrib>Sardain, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farabolini, W.</au><au>Ciampichetti, A.</au><au>Dabbene, F.</au><au>Fütterer, M.A.</au><au>Giancarli, L.</au><au>Laffont, G.</au><au>Puma, A. Li</au><au>Raboin, S.</au><au>Poitevin, Y.</au><au>Ricapito, I.</au><au>Sardain, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor</atitle><jtitle>Fusion engineering and design</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>81</volume><issue>1</issue><spage>753</spage><epage>762</epage><pages>753-762</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>In this paper, we present computations linking the tritium release rate to the characteristics of lithium–lead and helium cooling circuits. Impacting component performances are evaluated such as tritium permeation towards the He coolant in the blanket modules, lithium–lead circulation rate, tritium extraction unit efficiency, tritium permeation in steam generator, helium coolant leak rate, helium purification unit maximum flow rate and efficiency. Safety considerations are also taken into account.
A finite element model (FEM) for tritium permeation was developed considering various phenomena such as tritium transport by convection and diffusion in lithium–lead, MHD effects on liquid metal flows, tritium permeation in structures with temperature gradients.
Other sub-system performances, like He leak rate and efficiency of tritium extraction systems, are discussed via an engineering approach.
The results show that a reasonable compromise among the various requirements can be found, leading to technologically achievable requirements for tritium permeation barriers, tritium extraction systems both from Pb–17Li and He, and leak rates from the He cooling system.</abstract><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2005.07.018</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2006-02, Vol.81 (1), p.753-762 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_proquest_miscellaneous_29206798 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Controled nuclear fusion plants Energy Energy. Thermal use of fuels Exact sciences and technology Fusion blanket Installations for energy generation and conversion: thermal and electrical energy Lithium–lead Permeation Tritium |
title | Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tritium%20control%20modelling%20for%20a%20helium%20cooled%20lithium%E2%80%93lead%20blanket%20of%20a%20fusion%20power%20reactor&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Farabolini,%20W.&rft.date=2006-02-01&rft.volume=81&rft.issue=1&rft.spage=753&rft.epage=762&rft.pages=753-762&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/j.fusengdes.2005.07.018&rft_dat=%3Cproquest_cross%3E29206798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29206798&rft_id=info:pmid/&rft_els_id=S092037960500582X&rfr_iscdi=true |