Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor

In this paper, we present computations linking the tritium release rate to the characteristics of lithium–lead and helium cooling circuits. Impacting component performances are evaluated such as tritium permeation towards the He coolant in the blanket modules, lithium–lead circulation rate, tritium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2006-02, Vol.81 (1), p.753-762
Hauptverfasser: Farabolini, W., Ciampichetti, A., Dabbene, F., Fütterer, M.A., Giancarli, L., Laffont, G., Puma, A. Li, Raboin, S., Poitevin, Y., Ricapito, I., Sardain, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue 1
container_start_page 753
container_title Fusion engineering and design
container_volume 81
creator Farabolini, W.
Ciampichetti, A.
Dabbene, F.
Fütterer, M.A.
Giancarli, L.
Laffont, G.
Puma, A. Li
Raboin, S.
Poitevin, Y.
Ricapito, I.
Sardain, P.
description In this paper, we present computations linking the tritium release rate to the characteristics of lithium–lead and helium cooling circuits. Impacting component performances are evaluated such as tritium permeation towards the He coolant in the blanket modules, lithium–lead circulation rate, tritium extraction unit efficiency, tritium permeation in steam generator, helium coolant leak rate, helium purification unit maximum flow rate and efficiency. Safety considerations are also taken into account. A finite element model (FEM) for tritium permeation was developed considering various phenomena such as tritium transport by convection and diffusion in lithium–lead, MHD effects on liquid metal flows, tritium permeation in structures with temperature gradients. Other sub-system performances, like He leak rate and efficiency of tritium extraction systems, are discussed via an engineering approach. The results show that a reasonable compromise among the various requirements can be found, leading to technologically achievable requirements for tritium permeation barriers, tritium extraction systems both from Pb–17Li and He, and leak rates from the He cooling system.
doi_str_mv 10.1016/j.fusengdes.2005.07.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29206798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092037960500582X</els_id><sourcerecordid>29206798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-5ec528c3e4b1ea79f55504245aef54fc9db49fbeb271fe4314a87ae7c28f53383</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI34AvcEuzYjpNjhXhJSFzgiuU4a-rixsVOQdz4B_6QL8FVERyRdrVa7ezOziB0TElJCa3PFqVdJxieekhlRYgoiSwJbXbQhDaSFZK29S6akLYiBZNtvY8OUloQQmWOCXq8j2506yU2YRhj8HgZevDeDU_Yhog1noPfjoOHHns3znP79fHpQfe483p4hhEHm5H5DRcGvApvEHEEbcYQD9Ge1T7B0U-doofLi_vz6-L27urmfHZbGCbrsRBgRNUYBryjoGVrhRCEV1xosIJb0_Ydb20HXSWpBc4o143UIE3VWMFYw6bodHt3FcPLGtKoli6ZLEQPENZJVVl-LdsNUG6BJoaUIli1im6p47uiRG38VAv166fa-KmIVNnPvHnyQ6GT0d5GPRiX_tal4IznnKLZFgdZ76uDqJJxMBjoXQQzqj64f7m-AdY_krU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29206798</pqid></control><display><type>article</type><title>Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor</title><source>Elsevier ScienceDirect Journals</source><creator>Farabolini, W. ; Ciampichetti, A. ; Dabbene, F. ; Fütterer, M.A. ; Giancarli, L. ; Laffont, G. ; Puma, A. Li ; Raboin, S. ; Poitevin, Y. ; Ricapito, I. ; Sardain, P.</creator><creatorcontrib>Farabolini, W. ; Ciampichetti, A. ; Dabbene, F. ; Fütterer, M.A. ; Giancarli, L. ; Laffont, G. ; Puma, A. Li ; Raboin, S. ; Poitevin, Y. ; Ricapito, I. ; Sardain, P.</creatorcontrib><description>In this paper, we present computations linking the tritium release rate to the characteristics of lithium–lead and helium cooling circuits. Impacting component performances are evaluated such as tritium permeation towards the He coolant in the blanket modules, lithium–lead circulation rate, tritium extraction unit efficiency, tritium permeation in steam generator, helium coolant leak rate, helium purification unit maximum flow rate and efficiency. Safety considerations are also taken into account. A finite element model (FEM) for tritium permeation was developed considering various phenomena such as tritium transport by convection and diffusion in lithium–lead, MHD effects on liquid metal flows, tritium permeation in structures with temperature gradients. Other sub-system performances, like He leak rate and efficiency of tritium extraction systems, are discussed via an engineering approach. The results show that a reasonable compromise among the various requirements can be found, leading to technologically achievable requirements for tritium permeation barriers, tritium extraction systems both from Pb–17Li and He, and leak rates from the He cooling system.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2005.07.018</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fusion blanket ; Installations for energy generation and conversion: thermal and electrical energy ; Lithium–lead ; Permeation ; Tritium</subject><ispartof>Fusion engineering and design, 2006-02, Vol.81 (1), p.753-762</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-5ec528c3e4b1ea79f55504245aef54fc9db49fbeb271fe4314a87ae7c28f53383</citedby><cites>FETCH-LOGICAL-c376t-5ec528c3e4b1ea79f55504245aef54fc9db49fbeb271fe4314a87ae7c28f53383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092037960500582X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17543454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Farabolini, W.</creatorcontrib><creatorcontrib>Ciampichetti, A.</creatorcontrib><creatorcontrib>Dabbene, F.</creatorcontrib><creatorcontrib>Fütterer, M.A.</creatorcontrib><creatorcontrib>Giancarli, L.</creatorcontrib><creatorcontrib>Laffont, G.</creatorcontrib><creatorcontrib>Puma, A. Li</creatorcontrib><creatorcontrib>Raboin, S.</creatorcontrib><creatorcontrib>Poitevin, Y.</creatorcontrib><creatorcontrib>Ricapito, I.</creatorcontrib><creatorcontrib>Sardain, P.</creatorcontrib><title>Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor</title><title>Fusion engineering and design</title><description>In this paper, we present computations linking the tritium release rate to the characteristics of lithium–lead and helium cooling circuits. Impacting component performances are evaluated such as tritium permeation towards the He coolant in the blanket modules, lithium–lead circulation rate, tritium extraction unit efficiency, tritium permeation in steam generator, helium coolant leak rate, helium purification unit maximum flow rate and efficiency. Safety considerations are also taken into account. A finite element model (FEM) for tritium permeation was developed considering various phenomena such as tritium transport by convection and diffusion in lithium–lead, MHD effects on liquid metal flows, tritium permeation in structures with temperature gradients. Other sub-system performances, like He leak rate and efficiency of tritium extraction systems, are discussed via an engineering approach. The results show that a reasonable compromise among the various requirements can be found, leading to technologically achievable requirements for tritium permeation barriers, tritium extraction systems both from Pb–17Li and He, and leak rates from the He cooling system.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fusion blanket</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Lithium–lead</subject><subject>Permeation</subject><subject>Tritium</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI34AvcEuzYjpNjhXhJSFzgiuU4a-rixsVOQdz4B_6QL8FVERyRdrVa7ezOziB0TElJCa3PFqVdJxieekhlRYgoiSwJbXbQhDaSFZK29S6akLYiBZNtvY8OUloQQmWOCXq8j2506yU2YRhj8HgZevDeDU_Yhog1noPfjoOHHns3znP79fHpQfe483p4hhEHm5H5DRcGvApvEHEEbcYQD9Ge1T7B0U-doofLi_vz6-L27urmfHZbGCbrsRBgRNUYBryjoGVrhRCEV1xosIJb0_Ydb20HXSWpBc4o143UIE3VWMFYw6bodHt3FcPLGtKoli6ZLEQPENZJVVl-LdsNUG6BJoaUIli1im6p47uiRG38VAv166fa-KmIVNnPvHnyQ6GT0d5GPRiX_tal4IznnKLZFgdZ76uDqJJxMBjoXQQzqj64f7m-AdY_krU</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Farabolini, W.</creator><creator>Ciampichetti, A.</creator><creator>Dabbene, F.</creator><creator>Fütterer, M.A.</creator><creator>Giancarli, L.</creator><creator>Laffont, G.</creator><creator>Puma, A. Li</creator><creator>Raboin, S.</creator><creator>Poitevin, Y.</creator><creator>Ricapito, I.</creator><creator>Sardain, P.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060201</creationdate><title>Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor</title><author>Farabolini, W. ; Ciampichetti, A. ; Dabbene, F. ; Fütterer, M.A. ; Giancarli, L. ; Laffont, G. ; Puma, A. Li ; Raboin, S. ; Poitevin, Y. ; Ricapito, I. ; Sardain, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-5ec528c3e4b1ea79f55504245aef54fc9db49fbeb271fe4314a87ae7c28f53383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fusion blanket</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Lithium–lead</topic><topic>Permeation</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farabolini, W.</creatorcontrib><creatorcontrib>Ciampichetti, A.</creatorcontrib><creatorcontrib>Dabbene, F.</creatorcontrib><creatorcontrib>Fütterer, M.A.</creatorcontrib><creatorcontrib>Giancarli, L.</creatorcontrib><creatorcontrib>Laffont, G.</creatorcontrib><creatorcontrib>Puma, A. Li</creatorcontrib><creatorcontrib>Raboin, S.</creatorcontrib><creatorcontrib>Poitevin, Y.</creatorcontrib><creatorcontrib>Ricapito, I.</creatorcontrib><creatorcontrib>Sardain, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farabolini, W.</au><au>Ciampichetti, A.</au><au>Dabbene, F.</au><au>Fütterer, M.A.</au><au>Giancarli, L.</au><au>Laffont, G.</au><au>Puma, A. Li</au><au>Raboin, S.</au><au>Poitevin, Y.</au><au>Ricapito, I.</au><au>Sardain, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor</atitle><jtitle>Fusion engineering and design</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>81</volume><issue>1</issue><spage>753</spage><epage>762</epage><pages>753-762</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>In this paper, we present computations linking the tritium release rate to the characteristics of lithium–lead and helium cooling circuits. Impacting component performances are evaluated such as tritium permeation towards the He coolant in the blanket modules, lithium–lead circulation rate, tritium extraction unit efficiency, tritium permeation in steam generator, helium coolant leak rate, helium purification unit maximum flow rate and efficiency. Safety considerations are also taken into account. A finite element model (FEM) for tritium permeation was developed considering various phenomena such as tritium transport by convection and diffusion in lithium–lead, MHD effects on liquid metal flows, tritium permeation in structures with temperature gradients. Other sub-system performances, like He leak rate and efficiency of tritium extraction systems, are discussed via an engineering approach. The results show that a reasonable compromise among the various requirements can be found, leading to technologically achievable requirements for tritium permeation barriers, tritium extraction systems both from Pb–17Li and He, and leak rates from the He cooling system.</abstract><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2005.07.018</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2006-02, Vol.81 (1), p.753-762
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_miscellaneous_29206798
source Elsevier ScienceDirect Journals
subjects Applied sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fusion blanket
Installations for energy generation and conversion: thermal and electrical energy
Lithium–lead
Permeation
Tritium
title Tritium control modelling for a helium cooled lithium–lead blanket of a fusion power reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tritium%20control%20modelling%20for%20a%20helium%20cooled%20lithium%E2%80%93lead%20blanket%20of%20a%20fusion%20power%20reactor&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Farabolini,%20W.&rft.date=2006-02-01&rft.volume=81&rft.issue=1&rft.spage=753&rft.epage=762&rft.pages=753-762&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/j.fusengdes.2005.07.018&rft_dat=%3Cproquest_cross%3E29206798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29206798&rft_id=info:pmid/&rft_els_id=S092037960500582X&rfr_iscdi=true