The stability of a curved, heated boundary layer: linear and nonlinear problems

We consider the stability of high Reynolds number flow past a heated, curved wall. The influence of both buoyancy and curvature, with the appropriate sense, can render a flow unstable to longitudinal vortices. However, conversely each mechanism can make a flow more stable; as with a stable stratific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ANZIAM journal 2005-04, Vol.46 (4), p.507-543
Hauptverfasser: Watson, C. E., Otto, S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 543
container_issue 4
container_start_page 507
container_title The ANZIAM journal
container_volume 46
creator Watson, C. E.
Otto, S. R.
description We consider the stability of high Reynolds number flow past a heated, curved wall. The influence of both buoyancy and curvature, with the appropriate sense, can render a flow unstable to longitudinal vortices. However, conversely each mechanism can make a flow more stable; as with a stable stratification or a convex curvature. This is partially due to their influence on the basic flow and also due to additional terms in the stability equations. In fact the presence of buoyancy in combination with an appropriate local wall gradient can actually increase the wall shear and these effects can lead to supervelocities and the promotion of a wall jet. This leads to the interesting discovery that the flow can be unstable for both concave and convex curvatures. Furthermore, it is possible to observe sustained vortex growth in stably stratified boundary layers over convexly curved walls. The evolution of the modes is considered in both the linear and nonlinear régimes.
doi_str_mv 10.1017/S1446181100009652
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29206301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446181100009652</cupid><sourcerecordid>29206301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-4f2c427af77335574ad2767f16f8ab47225ad3a226e74567bdaf717232d1bff13</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA4JXVfDVpvdPppjAcsomXIW0S19m1mrTi_r0pKwqKuTg5SZ437zkHgGOMzjHC4mKOGeM4wRiFlfKY7IBBdxUlgsa7fd6974MD71cIMSooGYDZYmmgb1RWlEWzgbWFCuat-zD6DC6NaoyGWd1WWrkNLNXGuEtYFpVRDqpKw6qu-tObq7PSrP0h2LOq9Oao34fgaXy7GN1F09nkfnQ1jXJG0iZiloREKCsEpXEsmNJEcGExt4nKmCAkVpoqQrgRLOYi0wHFglCicWYtpkNwuv03GL-3xjdyXfjclKWqTN16SVKCOEUdePILXNWtq0JtkogkoYgkIQ4B3lK5q713xso3V6xD0xIj2Q1Y_hlw0ERbTeEb8_ktUO5VckFFLPnkUd5cP_Bnko7lPPC091DrzBX6xfyU8r_LFydJiko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788302888</pqid></control><display><type>article</type><title>The stability of a curved, heated boundary layer: linear and nonlinear problems</title><source>Alma/SFX Local Collection</source><creator>Watson, C. E. ; Otto, S. R.</creator><creatorcontrib>Watson, C. E. ; Otto, S. R.</creatorcontrib><description>We consider the stability of high Reynolds number flow past a heated, curved wall. The influence of both buoyancy and curvature, with the appropriate sense, can render a flow unstable to longitudinal vortices. However, conversely each mechanism can make a flow more stable; as with a stable stratification or a convex curvature. This is partially due to their influence on the basic flow and also due to additional terms in the stability equations. In fact the presence of buoyancy in combination with an appropriate local wall gradient can actually increase the wall shear and these effects can lead to supervelocities and the promotion of a wall jet. This leads to the interesting discovery that the flow can be unstable for both concave and convex curvatures. Furthermore, it is possible to observe sustained vortex growth in stably stratified boundary layers over convexly curved walls. The evolution of the modes is considered in both the linear and nonlinear régimes.</description><identifier>ISSN: 1446-1811</identifier><identifier>EISSN: 1446-8735</identifier><identifier>DOI: 10.1017/S1446181100009652</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layers ; Buoyancy ; Curvature ; Flow stability ; Fluid dynamics ; Fluid flow ; High Reynolds number ; Reynolds number ; Wall jets</subject><ispartof>The ANZIAM journal, 2005-04, Vol.46 (4), p.507-543</ispartof><rights>Copyright © Australian Mathematical Society 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-4f2c427af77335574ad2767f16f8ab47225ad3a226e74567bdaf717232d1bff13</citedby><cites>FETCH-LOGICAL-c429t-4f2c427af77335574ad2767f16f8ab47225ad3a226e74567bdaf717232d1bff13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Watson, C. E.</creatorcontrib><creatorcontrib>Otto, S. R.</creatorcontrib><title>The stability of a curved, heated boundary layer: linear and nonlinear problems</title><title>The ANZIAM journal</title><addtitle>ANZIAM J</addtitle><description>We consider the stability of high Reynolds number flow past a heated, curved wall. The influence of both buoyancy and curvature, with the appropriate sense, can render a flow unstable to longitudinal vortices. However, conversely each mechanism can make a flow more stable; as with a stable stratification or a convex curvature. This is partially due to their influence on the basic flow and also due to additional terms in the stability equations. In fact the presence of buoyancy in combination with an appropriate local wall gradient can actually increase the wall shear and these effects can lead to supervelocities and the promotion of a wall jet. This leads to the interesting discovery that the flow can be unstable for both concave and convex curvatures. Furthermore, it is possible to observe sustained vortex growth in stably stratified boundary layers over convexly curved walls. The evolution of the modes is considered in both the linear and nonlinear régimes.</description><subject>Boundary layers</subject><subject>Buoyancy</subject><subject>Curvature</subject><subject>Flow stability</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>High Reynolds number</subject><subject>Reynolds number</subject><subject>Wall jets</subject><issn>1446-1811</issn><issn>1446-8735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF1LwzAUhoMoOKc_wLuA4JXVfDVpvdPppjAcsomXIW0S19m1mrTi_r0pKwqKuTg5SZ437zkHgGOMzjHC4mKOGeM4wRiFlfKY7IBBdxUlgsa7fd6974MD71cIMSooGYDZYmmgb1RWlEWzgbWFCuat-zD6DC6NaoyGWd1WWrkNLNXGuEtYFpVRDqpKw6qu-tObq7PSrP0h2LOq9Oao34fgaXy7GN1F09nkfnQ1jXJG0iZiloREKCsEpXEsmNJEcGExt4nKmCAkVpoqQrgRLOYi0wHFglCicWYtpkNwuv03GL-3xjdyXfjclKWqTN16SVKCOEUdePILXNWtq0JtkogkoYgkIQ4B3lK5q713xso3V6xD0xIj2Q1Y_hlw0ERbTeEb8_ktUO5VckFFLPnkUd5cP_Bnko7lPPC091DrzBX6xfyU8r_LFydJiko</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Watson, C. E.</creator><creator>Otto, S. R.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050401</creationdate><title>The stability of a curved, heated boundary layer: linear and nonlinear problems</title><author>Watson, C. E. ; Otto, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-4f2c427af77335574ad2767f16f8ab47225ad3a226e74567bdaf717232d1bff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Boundary layers</topic><topic>Buoyancy</topic><topic>Curvature</topic><topic>Flow stability</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>High Reynolds number</topic><topic>Reynolds number</topic><topic>Wall jets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watson, C. E.</creatorcontrib><creatorcontrib>Otto, S. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The ANZIAM journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watson, C. E.</au><au>Otto, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stability of a curved, heated boundary layer: linear and nonlinear problems</atitle><jtitle>The ANZIAM journal</jtitle><addtitle>ANZIAM J</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>46</volume><issue>4</issue><spage>507</spage><epage>543</epage><pages>507-543</pages><issn>1446-1811</issn><eissn>1446-8735</eissn><abstract>We consider the stability of high Reynolds number flow past a heated, curved wall. The influence of both buoyancy and curvature, with the appropriate sense, can render a flow unstable to longitudinal vortices. However, conversely each mechanism can make a flow more stable; as with a stable stratification or a convex curvature. This is partially due to their influence on the basic flow and also due to additional terms in the stability equations. In fact the presence of buoyancy in combination with an appropriate local wall gradient can actually increase the wall shear and these effects can lead to supervelocities and the promotion of a wall jet. This leads to the interesting discovery that the flow can be unstable for both concave and convex curvatures. Furthermore, it is possible to observe sustained vortex growth in stably stratified boundary layers over convexly curved walls. The evolution of the modes is considered in both the linear and nonlinear régimes.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446181100009652</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1446-1811
ispartof The ANZIAM journal, 2005-04, Vol.46 (4), p.507-543
issn 1446-1811
1446-8735
language eng
recordid cdi_proquest_miscellaneous_29206301
source Alma/SFX Local Collection
subjects Boundary layers
Buoyancy
Curvature
Flow stability
Fluid dynamics
Fluid flow
High Reynolds number
Reynolds number
Wall jets
title The stability of a curved, heated boundary layer: linear and nonlinear problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stability%20of%20a%20curved,%20heated%20boundary%20layer:%20linear%20and%20nonlinear%20problems&rft.jtitle=The%20ANZIAM%20journal&rft.au=Watson,%20C.%20E.&rft.date=2005-04-01&rft.volume=46&rft.issue=4&rft.spage=507&rft.epage=543&rft.pages=507-543&rft.issn=1446-1811&rft.eissn=1446-8735&rft_id=info:doi/10.1017/S1446181100009652&rft_dat=%3Cproquest_cross%3E29206301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788302888&rft_id=info:pmid/&rft_cupid=10_1017_S1446181100009652&rfr_iscdi=true