Conformal Loss-Controlling Prediction

Conformal prediction (CP) is a learning framework controlling prediction coverage of prediction sets, which can be built on any learning algorithm for point prediction. This work proposes a learning framework named conformal loss-controlling prediction, which extends CP to the situation where the va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-01, Vol.PP, p.1-11
Hauptverfasser: Wang, Di, Wang, Ping, Ji, Zhong, Yang, Xiaojun, Li, Hongyue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transaction on neural networks and learning systems
container_volume PP
creator Wang, Di
Wang, Ping
Ji, Zhong
Yang, Xiaojun
Li, Hongyue
description Conformal prediction (CP) is a learning framework controlling prediction coverage of prediction sets, which can be built on any learning algorithm for point prediction. This work proposes a learning framework named conformal loss-controlling prediction, which extends CP to the situation where the value of a loss function needs to be controlled. Different from existing works about risk-controlling prediction sets and conformal risk control with the purpose of controlling the expected values of loss functions, the proposed approach in this article focuses on the loss for any test object, which is an extension of CP from miscoverage loss to some general loss. The controlling guarantee is proved under the assumption of exchangeability of data in finite-sample cases and the framework is tested empirically for classification with a class-varying loss and statistical postprocessing of numerical weather forecasting applications, which are introduced as point-wise classification and point-wise regression problems. All theoretical analysis and experimental results confirm the effectiveness of our loss-controlling approach.
doi_str_mv 10.1109/TNNLS.2024.3356512
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2920571273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920571273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-1646abfb574fec360bd5a0491f8ad40ad09fa7a7739d38d993f8f4194010bcfb3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRbKn9Ay6kG8FN6p1H5rGU4gtCFazgbphkZiSSZOpMuvDfm9rYu7n3wjmHw4fQJYYlxqBuN-t18bYkQNiS0pznmJygKcGcZIRKeXq8xccEzVP6gmE45JypczShkkglqZqi61XofIitaRZFSCkb3j6Gpqm7z8VrdLau-jp0F-jMmya5-bhn6P3hfrN6yoqXx-fVXZFVRMk-w5xxU_oyF8y7inIobW6AKeylsQyMBeWNMEJQZam0SlEvPcOKAYay8iWdoZtD7jaG751LvW7rVLmmMZ0Lu6SJIpALTAQdpOQgreLQOzqvt7FuTfzRGPSekP4jpPeE9EhoMF2N-buydfZo-edBfwE7tGB7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920571273</pqid></control><display><type>article</type><title>Conformal Loss-Controlling Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Di ; Wang, Ping ; Ji, Zhong ; Yang, Xiaojun ; Li, Hongyue</creator><creatorcontrib>Wang, Di ; Wang, Ping ; Ji, Zhong ; Yang, Xiaojun ; Li, Hongyue</creatorcontrib><description>Conformal prediction (CP) is a learning framework controlling prediction coverage of prediction sets, which can be built on any learning algorithm for point prediction. This work proposes a learning framework named conformal loss-controlling prediction, which extends CP to the situation where the value of a loss function needs to be controlled. Different from existing works about risk-controlling prediction sets and conformal risk control with the purpose of controlling the expected values of loss functions, the proposed approach in this article focuses on the loss for any test object, which is an extension of CP from miscoverage loss to some general loss. The controlling guarantee is proved under the assumption of exchangeability of data in finite-sample cases and the framework is tested empirically for classification with a class-varying loss and statistical postprocessing of numerical weather forecasting applications, which are introduced as point-wise classification and point-wise regression problems. All theoretical analysis and experimental results confirm the effectiveness of our loss-controlling approach.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3356512</identifier><identifier>PMID: 38289839</identifier><language>eng</language><publisher>United States</publisher><ispartof>IEEE transaction on neural networks and learning systems, 2024-01, Vol.PP, p.1-11</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-0283-5365 ; 0000-0003-1586-0196 ; 0000-0002-2197-3739 ; 0000-0001-5759-8283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38289839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Ji, Zhong</creatorcontrib><creatorcontrib>Yang, Xiaojun</creatorcontrib><creatorcontrib>Li, Hongyue</creatorcontrib><title>Conformal Loss-Controlling Prediction</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Conformal prediction (CP) is a learning framework controlling prediction coverage of prediction sets, which can be built on any learning algorithm for point prediction. This work proposes a learning framework named conformal loss-controlling prediction, which extends CP to the situation where the value of a loss function needs to be controlled. Different from existing works about risk-controlling prediction sets and conformal risk control with the purpose of controlling the expected values of loss functions, the proposed approach in this article focuses on the loss for any test object, which is an extension of CP from miscoverage loss to some general loss. The controlling guarantee is proved under the assumption of exchangeability of data in finite-sample cases and the framework is tested empirically for classification with a class-varying loss and statistical postprocessing of numerical weather forecasting applications, which are introduced as point-wise classification and point-wise regression problems. All theoretical analysis and experimental results confirm the effectiveness of our loss-controlling approach.</description><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRbKn9Ay6kG8FN6p1H5rGU4gtCFazgbphkZiSSZOpMuvDfm9rYu7n3wjmHw4fQJYYlxqBuN-t18bYkQNiS0pznmJygKcGcZIRKeXq8xccEzVP6gmE45JypczShkkglqZqi61XofIitaRZFSCkb3j6Gpqm7z8VrdLau-jp0F-jMmya5-bhn6P3hfrN6yoqXx-fVXZFVRMk-w5xxU_oyF8y7inIobW6AKeylsQyMBeWNMEJQZam0SlEvPcOKAYay8iWdoZtD7jaG751LvW7rVLmmMZ0Lu6SJIpALTAQdpOQgreLQOzqvt7FuTfzRGPSekP4jpPeE9EhoMF2N-buydfZo-edBfwE7tGB7</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Wang, Di</creator><creator>Wang, Ping</creator><creator>Ji, Zhong</creator><creator>Yang, Xiaojun</creator><creator>Li, Hongyue</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-0283-5365</orcidid><orcidid>https://orcid.org/0000-0003-1586-0196</orcidid><orcidid>https://orcid.org/0000-0002-2197-3739</orcidid><orcidid>https://orcid.org/0000-0001-5759-8283</orcidid></search><sort><creationdate>20240130</creationdate><title>Conformal Loss-Controlling Prediction</title><author>Wang, Di ; Wang, Ping ; Ji, Zhong ; Yang, Xiaojun ; Li, Hongyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-1646abfb574fec360bd5a0491f8ad40ad09fa7a7739d38d993f8f4194010bcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Ji, Zhong</creatorcontrib><creatorcontrib>Yang, Xiaojun</creatorcontrib><creatorcontrib>Li, Hongyue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Di</au><au>Wang, Ping</au><au>Ji, Zhong</au><au>Yang, Xiaojun</au><au>Li, Hongyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal Loss-Controlling Prediction</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-01-30</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><abstract>Conformal prediction (CP) is a learning framework controlling prediction coverage of prediction sets, which can be built on any learning algorithm for point prediction. This work proposes a learning framework named conformal loss-controlling prediction, which extends CP to the situation where the value of a loss function needs to be controlled. Different from existing works about risk-controlling prediction sets and conformal risk control with the purpose of controlling the expected values of loss functions, the proposed approach in this article focuses on the loss for any test object, which is an extension of CP from miscoverage loss to some general loss. The controlling guarantee is proved under the assumption of exchangeability of data in finite-sample cases and the framework is tested empirically for classification with a class-varying loss and statistical postprocessing of numerical weather forecasting applications, which are introduced as point-wise classification and point-wise regression problems. All theoretical analysis and experimental results confirm the effectiveness of our loss-controlling approach.</abstract><cop>United States</cop><pmid>38289839</pmid><doi>10.1109/TNNLS.2024.3356512</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0001-0283-5365</orcidid><orcidid>https://orcid.org/0000-0003-1586-0196</orcidid><orcidid>https://orcid.org/0000-0002-2197-3739</orcidid><orcidid>https://orcid.org/0000-0001-5759-8283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-01, Vol.PP, p.1-11
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2920571273
source IEEE Electronic Library (IEL)
title Conformal Loss-Controlling Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20Loss-Controlling%20Prediction&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wang,%20Di&rft.date=2024-01-30&rft.volume=PP&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2162-237X&rft.eissn=2162-2388&rft_id=info:doi/10.1109/TNNLS.2024.3356512&rft_dat=%3Cproquest_cross%3E2920571273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920571273&rft_id=info:pmid/38289839&rfr_iscdi=true