Microencapsulated Perovskite Crystals via In Situ Permeation Growth from Polymer Microencapsulation‐Expansion‐Contraction Strategy: Advancing a Record Long‐Term Stability beyond 10 000 h for Perovskite Solar Cells

Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability are predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation‐expansion‐contraction strategy is proposed for the first time to optimize the crystallization be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-05, Vol.36 (18), p.e2313080-n/a
Hauptverfasser: Xu, Yibo, Wang, Shirong, Liu, Hongli, Li, Xianggao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e2313080
container_title Advanced materials (Weinheim)
container_volume 36
creator Xu, Yibo
Wang, Shirong
Liu, Hongli
Li, Xianggao
description Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability are predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation‐expansion‐contraction strategy is proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4‐acryloylmorpholine) (poly(4‐AcM)) network on PbI2 surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 µm and reduced trap density from 1.12 × 1016 to 2.56 × 1015 cm−3. Moreover, profiting from the protection of poly(4‐AcM) microencapsulation layer, the degradation of the perovskite is markedly suppressed. Resultant PSCs gain a robust power conversion efficiency (PCE) of 24.04%. Typically, they maintain 91% of their initial PCE for 13 008 h in a desiccated ambient environment and retain 92% PCE after storage for 4000 h with a relative humidity of 50 ± 10%, which is the state‐of‐the‐art long‐term stability among the reported contributions. Microencapsulation of PbI2 and perovskite crystals with the in situ polymerized poly(4‐acryloylmorpholine) (poly(4‐AcM)): this novel strategy modulates the PbI2‐ammonium salt reaction through poly(4‐AcM) microencapsulation‐expansion‐contraction behavior. The resultant decelerated crystallization rate fosters high‐quality perovskite film formation, achieving a notable power conversion efficiency (PCE) of up to 24.04%. Remarkably, after 13 008 h in dry storage, the PCE impressively retains 91% of its initial efficiency.
doi_str_mv 10.1002/adma.202313080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2919745067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919745067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3500-91130f23e6fae542bee11ebd50e62ac924f1de5b653e9b569f63357d090156103</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhiMEEmXhytkSFy4p4zh2a25V2F1W6ooVXc6Wk0yKl8QuttMlNx6BR-BZeA5OPAkuRYD2wskj-fv_-Wcmy55SmFOA4oVuBz0voGCUwRLuZTPKC5qXIPn9bAaS8VyKcvkwexTCDQBIAWKWfb80jXdoG70LY68jtuQKvduHDyYiqfwUou4D2RtNLizZmDge_gfU0ThLzr27je9J591Arlw_DejJHcOE_fj85fTTTttwrCtno9fNL4NNqiJup5dk1e61bYzdEk3eYuN8S9bObhN_nfolUNemN3EiNU7OtoTCt69pCpK6O_9v5o3rtScV9n14nD3oUnp88vs9yd6dnV5Xr_P1m_OLarXOG8YBcknTxrqCoeg08rKoESnFuuWAotCNLMqOtshrwRnKmgvZCcb4ogUJlAsK7CR7fvTdefdxxBDVYEKTEmiLbgyqkFQuSg5ikdBnd9AbN3qb0ikGpeSpmVgman6k0ipD8NipnTeD9pOioA7HVodjqz_HTgJ5FNyaHqf_0Gr16nL1V_sT43q1dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049592468</pqid></control><display><type>article</type><title>Microencapsulated Perovskite Crystals via In Situ Permeation Growth from Polymer Microencapsulation‐Expansion‐Contraction Strategy: Advancing a Record Long‐Term Stability beyond 10 000 h for Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Yibo ; Wang, Shirong ; Liu, Hongli ; Li, Xianggao</creator><creatorcontrib>Xu, Yibo ; Wang, Shirong ; Liu, Hongli ; Li, Xianggao</creatorcontrib><description>Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability are predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation‐expansion‐contraction strategy is proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4‐acryloylmorpholine) (poly(4‐AcM)) network on PbI2 surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 µm and reduced trap density from 1.12 × 1016 to 2.56 × 1015 cm−3. Moreover, profiting from the protection of poly(4‐AcM) microencapsulation layer, the degradation of the perovskite is markedly suppressed. Resultant PSCs gain a robust power conversion efficiency (PCE) of 24.04%. Typically, they maintain 91% of their initial PCE for 13 008 h in a desiccated ambient environment and retain 92% PCE after storage for 4000 h with a relative humidity of 50 ± 10%, which is the state‐of‐the‐art long‐term stability among the reported contributions. Microencapsulation of PbI2 and perovskite crystals with the in situ polymerized poly(4‐acryloylmorpholine) (poly(4‐AcM)): this novel strategy modulates the PbI2‐ammonium salt reaction through poly(4‐AcM) microencapsulation‐expansion‐contraction behavior. The resultant decelerated crystallization rate fosters high‐quality perovskite film formation, achieving a notable power conversion efficiency (PCE) of up to 24.04%. Remarkably, after 13 008 h in dry storage, the PCE impressively retains 91% of its initial efficiency.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202313080</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Contraction ; crystalline quality ; Crystallinity ; Crystallization ; Energy conversion efficiency ; Grain size ; long‐term stability ; Metal halides ; Microencapsulation ; microencapsulation‐expansion‐contraction strategy ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; poly(4‐acryloylmorpholine) ; Polymers ; Relative humidity ; Solar cells ; Stability</subject><ispartof>Advanced materials (Weinheim), 2024-05, Vol.36 (18), p.e2313080-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3500-91130f23e6fae542bee11ebd50e62ac924f1de5b653e9b569f63357d090156103</citedby><cites>FETCH-LOGICAL-c3500-91130f23e6fae542bee11ebd50e62ac924f1de5b653e9b569f63357d090156103</cites><orcidid>0000-0002-9942-9071 ; 0000-0001-6127-1742 ; 0000-0002-6396-8292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202313080$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202313080$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Xu, Yibo</creatorcontrib><creatorcontrib>Wang, Shirong</creatorcontrib><creatorcontrib>Liu, Hongli</creatorcontrib><creatorcontrib>Li, Xianggao</creatorcontrib><title>Microencapsulated Perovskite Crystals via In Situ Permeation Growth from Polymer Microencapsulation‐Expansion‐Contraction Strategy: Advancing a Record Long‐Term Stability beyond 10 000 h for Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><description>Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability are predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation‐expansion‐contraction strategy is proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4‐acryloylmorpholine) (poly(4‐AcM)) network on PbI2 surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 µm and reduced trap density from 1.12 × 1016 to 2.56 × 1015 cm−3. Moreover, profiting from the protection of poly(4‐AcM) microencapsulation layer, the degradation of the perovskite is markedly suppressed. Resultant PSCs gain a robust power conversion efficiency (PCE) of 24.04%. Typically, they maintain 91% of their initial PCE for 13 008 h in a desiccated ambient environment and retain 92% PCE after storage for 4000 h with a relative humidity of 50 ± 10%, which is the state‐of‐the‐art long‐term stability among the reported contributions. Microencapsulation of PbI2 and perovskite crystals with the in situ polymerized poly(4‐acryloylmorpholine) (poly(4‐AcM)): this novel strategy modulates the PbI2‐ammonium salt reaction through poly(4‐AcM) microencapsulation‐expansion‐contraction behavior. The resultant decelerated crystallization rate fosters high‐quality perovskite film formation, achieving a notable power conversion efficiency (PCE) of up to 24.04%. Remarkably, after 13 008 h in dry storage, the PCE impressively retains 91% of its initial efficiency.</description><subject>Contraction</subject><subject>crystalline quality</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Energy conversion efficiency</subject><subject>Grain size</subject><subject>long‐term stability</subject><subject>Metal halides</subject><subject>Microencapsulation</subject><subject>microencapsulation‐expansion‐contraction strategy</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>poly(4‐acryloylmorpholine)</subject><subject>Polymers</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>Stability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcGO0zAQhiMEEmXhytkSFy4p4zh2a25V2F1W6ooVXc6Wk0yKl8QuttMlNx6BR-BZeA5OPAkuRYD2wskj-fv_-Wcmy55SmFOA4oVuBz0voGCUwRLuZTPKC5qXIPn9bAaS8VyKcvkwexTCDQBIAWKWfb80jXdoG70LY68jtuQKvduHDyYiqfwUou4D2RtNLizZmDge_gfU0ThLzr27je9J591Arlw_DejJHcOE_fj85fTTTttwrCtno9fNL4NNqiJup5dk1e61bYzdEk3eYuN8S9bObhN_nfolUNemN3EiNU7OtoTCt69pCpK6O_9v5o3rtScV9n14nD3oUnp88vs9yd6dnV5Xr_P1m_OLarXOG8YBcknTxrqCoeg08rKoESnFuuWAotCNLMqOtshrwRnKmgvZCcb4ogUJlAsK7CR7fvTdefdxxBDVYEKTEmiLbgyqkFQuSg5ikdBnd9AbN3qb0ikGpeSpmVgman6k0ipD8NipnTeD9pOioA7HVodjqz_HTgJ5FNyaHqf_0Gr16nL1V_sT43q1dg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Xu, Yibo</creator><creator>Wang, Shirong</creator><creator>Liu, Hongli</creator><creator>Li, Xianggao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9942-9071</orcidid><orcidid>https://orcid.org/0000-0001-6127-1742</orcidid><orcidid>https://orcid.org/0000-0002-6396-8292</orcidid></search><sort><creationdate>20240501</creationdate><title>Microencapsulated Perovskite Crystals via In Situ Permeation Growth from Polymer Microencapsulation‐Expansion‐Contraction Strategy: Advancing a Record Long‐Term Stability beyond 10 000 h for Perovskite Solar Cells</title><author>Xu, Yibo ; Wang, Shirong ; Liu, Hongli ; Li, Xianggao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3500-91130f23e6fae542bee11ebd50e62ac924f1de5b653e9b569f63357d090156103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Contraction</topic><topic>crystalline quality</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Energy conversion efficiency</topic><topic>Grain size</topic><topic>long‐term stability</topic><topic>Metal halides</topic><topic>Microencapsulation</topic><topic>microencapsulation‐expansion‐contraction strategy</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>poly(4‐acryloylmorpholine)</topic><topic>Polymers</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yibo</creatorcontrib><creatorcontrib>Wang, Shirong</creatorcontrib><creatorcontrib>Liu, Hongli</creatorcontrib><creatorcontrib>Li, Xianggao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yibo</au><au>Wang, Shirong</au><au>Liu, Hongli</au><au>Li, Xianggao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microencapsulated Perovskite Crystals via In Situ Permeation Growth from Polymer Microencapsulation‐Expansion‐Contraction Strategy: Advancing a Record Long‐Term Stability beyond 10 000 h for Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>36</volume><issue>18</issue><spage>e2313080</spage><epage>n/a</epage><pages>e2313080-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability are predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation‐expansion‐contraction strategy is proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4‐acryloylmorpholine) (poly(4‐AcM)) network on PbI2 surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 µm and reduced trap density from 1.12 × 1016 to 2.56 × 1015 cm−3. Moreover, profiting from the protection of poly(4‐AcM) microencapsulation layer, the degradation of the perovskite is markedly suppressed. Resultant PSCs gain a robust power conversion efficiency (PCE) of 24.04%. Typically, they maintain 91% of their initial PCE for 13 008 h in a desiccated ambient environment and retain 92% PCE after storage for 4000 h with a relative humidity of 50 ± 10%, which is the state‐of‐the‐art long‐term stability among the reported contributions. Microencapsulation of PbI2 and perovskite crystals with the in situ polymerized poly(4‐acryloylmorpholine) (poly(4‐AcM)): this novel strategy modulates the PbI2‐ammonium salt reaction through poly(4‐AcM) microencapsulation‐expansion‐contraction behavior. The resultant decelerated crystallization rate fosters high‐quality perovskite film formation, achieving a notable power conversion efficiency (PCE) of up to 24.04%. Remarkably, after 13 008 h in dry storage, the PCE impressively retains 91% of its initial efficiency.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202313080</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9942-9071</orcidid><orcidid>https://orcid.org/0000-0001-6127-1742</orcidid><orcidid>https://orcid.org/0000-0002-6396-8292</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-05, Vol.36 (18), p.e2313080-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2919745067
source Wiley Online Library Journals Frontfile Complete
subjects Contraction
crystalline quality
Crystallinity
Crystallization
Energy conversion efficiency
Grain size
long‐term stability
Metal halides
Microencapsulation
microencapsulation‐expansion‐contraction strategy
perovskite solar cells
Perovskites
Photovoltaic cells
poly(4‐acryloylmorpholine)
Polymers
Relative humidity
Solar cells
Stability
title Microencapsulated Perovskite Crystals via In Situ Permeation Growth from Polymer Microencapsulation‐Expansion‐Contraction Strategy: Advancing a Record Long‐Term Stability beyond 10 000 h for Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microencapsulated%20Perovskite%20Crystals%20via%20In%20Situ%20Permeation%20Growth%20from%20Polymer%20Microencapsulation%E2%80%90Expansion%E2%80%90Contraction%20Strategy:%20Advancing%20a%20Record%20Long%E2%80%90Term%20Stability%20beyond%2010%C2%A0000%20h%20for%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xu,%20Yibo&rft.date=2024-05-01&rft.volume=36&rft.issue=18&rft.spage=e2313080&rft.epage=n/a&rft.pages=e2313080-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202313080&rft_dat=%3Cproquest_cross%3E2919745067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049592468&rft_id=info:pmid/&rfr_iscdi=true