Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment

We describe measurements of the surface slope and reconstruction of the interface shape during the spreading of an oleic acid film on the surface of a thin aqueous glycerol mixture. This experimental system closely mimics the behaviour of an insoluble surfactant film driven to spread on a thin visco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2005-12, Vol.544 (1), p.23-51
Hauptverfasser: DUSSAUD, ANNE D., MATAR, OMAR K., TROIAN, SANDRA M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 23
container_title Journal of fluid mechanics
container_volume 544
creator DUSSAUD, ANNE D.
MATAR, OMAR K.
TROIAN, SANDRA M.
description We describe measurements of the surface slope and reconstruction of the interface shape during the spreading of an oleic acid film on the surface of a thin aqueous glycerol mixture. This experimental system closely mimics the behaviour of an insoluble surfactant film driven to spread on a thin viscous layer under the action of a tangential (Marangoni) surface stress. Refracted image Moiré topography is used to monitor the evolution of the surface slope over macroscopic distances, from which the time variant interface shape and advancing speed of the surfactant film are inferred. The interfacial profile exhibits a strong surface depression ahead of the surfactant source capped by an elevated rim at the surfactant leading edge. The surface slope and shape as well as the propagation characteristics of the advancing rim can be compared directly with theoretical predictions. The agreement is quite strong when the model allows for a small level of pre-existing surface contamination of the initial liquid layer. Comparison between theoretical and experimental profiles reveals the importance of the initial shear stress in determining the evolution in the film thickness and surfactant distribution. This initial stress appears to thin the underlying liquid support so drastically that the surfactant droplet behaves as a finite and not an infinite source, even though there is always an excess of surfactant present at the origin.
doi_str_mv 10.1017/S002211200500621X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29192474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S002211200500621X</cupid><sourcerecordid>29192474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-f4a4593314b7e0e294a5179ce8c15adc11df2fd0c02515c244fe6632bfc3006f3</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSMEEkvhB3CzkOAW8Dh2suaGtlCQCggtiN6siTNuXRIntRPR5dfj1a6oBOI0h_fNm2e_ongK_CVwaF5tORcCQHCuOK8FXNwrViBrXTa1VPeL1V4u9_rD4lFK15xDxXWzKn5tp0jY-XDJ7BVGtDNFn2ZvExsdw8B8SGO_tD2xtESXdQwzc74f2BgYsvnKB9b7m8V3rMcdxdfMjsOE2STrLc0_iUKmaIy7bNcxup3yhYHC_Lh44LBP9OQ4T4pv795-3bwvzz-ffdi8OS-tEnIunUSpdFWBbBviJLREBY22tLagsLMAnROu45YLBcoKKR3VdSVaZ6v8Fa46KV4cfKc43iyUZjP4ZKnvMdC4JCM0aCEbmcFnf4HX4xJDzmYE8PUaar2H4ADZOKYUyZkpPwfjzgA3-yrMP1XknedHY0wWexcxWJ_uFptKaqHWmSsPXG6Abv_oGH-YuqkaZeqzL-Z0u_mkT79fmI-Zr45ZcGij7y7pLvH_0_wG3ryokA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210881694</pqid></control><display><type>article</type><title>Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment</title><source>Cambridge University Press Journals Complete</source><creator>DUSSAUD, ANNE D. ; MATAR, OMAR K. ; TROIAN, SANDRA M.</creator><creatorcontrib>DUSSAUD, ANNE D. ; MATAR, OMAR K. ; TROIAN, SANDRA M.</creatorcontrib><description>We describe measurements of the surface slope and reconstruction of the interface shape during the spreading of an oleic acid film on the surface of a thin aqueous glycerol mixture. This experimental system closely mimics the behaviour of an insoluble surfactant film driven to spread on a thin viscous layer under the action of a tangential (Marangoni) surface stress. Refracted image Moiré topography is used to monitor the evolution of the surface slope over macroscopic distances, from which the time variant interface shape and advancing speed of the surfactant film are inferred. The interfacial profile exhibits a strong surface depression ahead of the surfactant source capped by an elevated rim at the surfactant leading edge. The surface slope and shape as well as the propagation characteristics of the advancing rim can be compared directly with theoretical predictions. The agreement is quite strong when the model allows for a small level of pre-existing surface contamination of the initial liquid layer. Comparison between theoretical and experimental profiles reveals the importance of the initial shear stress in determining the evolution in the film thickness and surfactant distribution. This initial stress appears to thin the underlying liquid support so drastically that the surfactant droplet behaves as a finite and not an infinite source, even though there is always an excess of surfactant present at the origin.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S002211200500621X</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Chemistry ; Exact sciences and technology ; Gas-liquid interface and liquid-liquid interface ; General and physical chemistry ; Geologic depressions ; Shear stress ; Surface physical chemistry ; Surface-active agents: properties ; Surfactants</subject><ispartof>Journal of fluid mechanics, 2005-12, Vol.544 (1), p.23-51</ispartof><rights>2005 Cambridge University Press</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-f4a4593314b7e0e294a5179ce8c15adc11df2fd0c02515c244fe6632bfc3006f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211200500621X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17349258$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DUSSAUD, ANNE D.</creatorcontrib><creatorcontrib>MATAR, OMAR K.</creatorcontrib><creatorcontrib>TROIAN, SANDRA M.</creatorcontrib><title>Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We describe measurements of the surface slope and reconstruction of the interface shape during the spreading of an oleic acid film on the surface of a thin aqueous glycerol mixture. This experimental system closely mimics the behaviour of an insoluble surfactant film driven to spread on a thin viscous layer under the action of a tangential (Marangoni) surface stress. Refracted image Moiré topography is used to monitor the evolution of the surface slope over macroscopic distances, from which the time variant interface shape and advancing speed of the surfactant film are inferred. The interfacial profile exhibits a strong surface depression ahead of the surfactant source capped by an elevated rim at the surfactant leading edge. The surface slope and shape as well as the propagation characteristics of the advancing rim can be compared directly with theoretical predictions. The agreement is quite strong when the model allows for a small level of pre-existing surface contamination of the initial liquid layer. Comparison between theoretical and experimental profiles reveals the importance of the initial shear stress in determining the evolution in the film thickness and surfactant distribution. This initial stress appears to thin the underlying liquid support so drastically that the surfactant droplet behaves as a finite and not an infinite source, even though there is always an excess of surfactant present at the origin.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Gas-liquid interface and liquid-liquid interface</subject><subject>General and physical chemistry</subject><subject>Geologic depressions</subject><subject>Shear stress</subject><subject>Surface physical chemistry</subject><subject>Surface-active agents: properties</subject><subject>Surfactants</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFv1DAQhSMEEkvhB3CzkOAW8Dh2suaGtlCQCggtiN6siTNuXRIntRPR5dfj1a6oBOI0h_fNm2e_ongK_CVwaF5tORcCQHCuOK8FXNwrViBrXTa1VPeL1V4u9_rD4lFK15xDxXWzKn5tp0jY-XDJ7BVGtDNFn2ZvExsdw8B8SGO_tD2xtESXdQwzc74f2BgYsvnKB9b7m8V3rMcdxdfMjsOE2STrLc0_iUKmaIy7bNcxup3yhYHC_Lh44LBP9OQ4T4pv795-3bwvzz-ffdi8OS-tEnIunUSpdFWBbBviJLREBY22tLagsLMAnROu45YLBcoKKR3VdSVaZ6v8Fa46KV4cfKc43iyUZjP4ZKnvMdC4JCM0aCEbmcFnf4HX4xJDzmYE8PUaar2H4ADZOKYUyZkpPwfjzgA3-yrMP1XknedHY0wWexcxWJ_uFptKaqHWmSsPXG6Abv_oGH-YuqkaZeqzL-Z0u_mkT79fmI-Zr45ZcGij7y7pLvH_0_wG3ryokA</recordid><startdate>20051210</startdate><enddate>20051210</enddate><creator>DUSSAUD, ANNE D.</creator><creator>MATAR, OMAR K.</creator><creator>TROIAN, SANDRA M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20051210</creationdate><title>Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment</title><author>DUSSAUD, ANNE D. ; MATAR, OMAR K. ; TROIAN, SANDRA M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-f4a4593314b7e0e294a5179ce8c15adc11df2fd0c02515c244fe6632bfc3006f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Gas-liquid interface and liquid-liquid interface</topic><topic>General and physical chemistry</topic><topic>Geologic depressions</topic><topic>Shear stress</topic><topic>Surface physical chemistry</topic><topic>Surface-active agents: properties</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUSSAUD, ANNE D.</creatorcontrib><creatorcontrib>MATAR, OMAR K.</creatorcontrib><creatorcontrib>TROIAN, SANDRA M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUSSAUD, ANNE D.</au><au>MATAR, OMAR K.</au><au>TROIAN, SANDRA M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2005-12-10</date><risdate>2005</risdate><volume>544</volume><issue>1</issue><spage>23</spage><epage>51</epage><pages>23-51</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We describe measurements of the surface slope and reconstruction of the interface shape during the spreading of an oleic acid film on the surface of a thin aqueous glycerol mixture. This experimental system closely mimics the behaviour of an insoluble surfactant film driven to spread on a thin viscous layer under the action of a tangential (Marangoni) surface stress. Refracted image Moiré topography is used to monitor the evolution of the surface slope over macroscopic distances, from which the time variant interface shape and advancing speed of the surfactant film are inferred. The interfacial profile exhibits a strong surface depression ahead of the surfactant source capped by an elevated rim at the surfactant leading edge. The surface slope and shape as well as the propagation characteristics of the advancing rim can be compared directly with theoretical predictions. The agreement is quite strong when the model allows for a small level of pre-existing surface contamination of the initial liquid layer. Comparison between theoretical and experimental profiles reveals the importance of the initial shear stress in determining the evolution in the film thickness and surfactant distribution. This initial stress appears to thin the underlying liquid support so drastically that the surfactant droplet behaves as a finite and not an infinite source, even though there is always an excess of surfactant present at the origin.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S002211200500621X</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2005-12, Vol.544 (1), p.23-51
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_29192474
source Cambridge University Press Journals Complete
subjects Chemistry
Exact sciences and technology
Gas-liquid interface and liquid-liquid interface
General and physical chemistry
Geologic depressions
Shear stress
Surface physical chemistry
Surface-active agents: properties
Surfactants
title Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spreading%20characteristics%20of%20an%20insoluble%20surfactant%20film%20on%20a%20thin%20liquid%20layer:%20comparison%20between%20theory%20and%20experiment&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=DUSSAUD,%20ANNE%20D.&rft.date=2005-12-10&rft.volume=544&rft.issue=1&rft.spage=23&rft.epage=51&rft.pages=23-51&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S002211200500621X&rft_dat=%3Cproquest_cross%3E29192474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210881694&rft_id=info:pmid/&rft_cupid=10_1017_S002211200500621X&rfr_iscdi=true